
Economic Growth: Lecture 2

Doug Hanley

In this lecture we’re going to go over some of the foundational theories of en-

dogenous technological growth. These came around in earnest starting in the

early nineties with Romer (1990) and Aghion and Howitt (1992), as well as

Grossman and Helpman (1991), which provides an interesting synthesis of the

two. A little later on Jones (1995) provides an insightful critique to this strand

of literature, in addition to a bit of perspective.

1 Aggregate Framework

How might we begin to think about technological growth in an economy? In

the simplest representation, we can imagine there is an aggregate production

for ideas and that this concept of ideas maps directly into what we’ve been

discussing as total factor productivity (A). The rate of change of the stock

ideas is then a function of the current stock of ideas and the amount of effort

put into producing new ideas through, for example through research. We’ll

think of this in terms of labor, but you could also imagine capital playing an

important role.

Thus we have Ȧ = G(A,R) for some function G. This representation is a bit

abstract, so we’ll assume a fairly flexible functional form

Ȧ = GAφRη
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This captures the notion that as the state of knowledge advances, coming up

with new and useful ideas becomes harder. Given this specification, the growth

rate of ideas, which should have a strong bearing on the overall growth rate of

the economy, is then

gA =
Ȧ

A
=

GRη

A1−φ

Let the fraction of labor devoted to research be s, so that R = sL, and suppose

that s is constant over time. In general we are looking for equilibria with

constant growth rates. For this to be true we must have

g∗A =
ηn

1− φ

Thus assuming for now that φ < 1, we find that the steady state growth rate of

ideas is determined solely by population growth n.

Some find this to be a depressing result, in the sense that policies, such as

a research subsidy for instance, have no chance of affecting long-term growth

rates. That doesn’t mean they can’t have substantive effects though. Policies

which put ”upward pressure” on the incentives for research will increase growth

rates in the short term, but this will dissipated out into level effects over time.

To see this consider the growth rate of gA. I know that seems weird, but bear

with me. Suppose that s is constant over time, we have

ġA
gA

= ηn− (1− φ)gA

So in this case, gA actually follows a stable and corrective path over time when-

ever φ < 1. Looking at this equation, we can also pretty decisively rule out

the case where φ > 1, as that would lead to divergent, and highly unstable and

path-dependent growth rates. This doesn’t seem to be the case anywhere I’ve

seen.
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The only remaining case is the one where φ = 1. In this setting, our expression

for the growth rates becomes simply

g = GRη

This is arguably more intuitive an expression, although it may seem to be a

knife-edge case in the context of this presentation. The primary issue that arises

though is that it predicts that growth should increase without bound so long

as n > 0 and that larger economies should grow faster than small economies.

These scale effects are clearly at least not the major drivers of growth. See

Jones (1995) for a detailed discussion of these issues.

Nonetheless, we’ll be making this assumption (φ = 1 and n = 0) for much of

the remainder of the course, largely for the sake of analytic simplicity. There’s

no major obstacle to undoing this assumption in most models that we’ll study,

and in many it may not have major welfare or policy implications anyway.

2 Microeconomic Foundations

The major breakthrough associated with Romer (1990) was that it gave us a

way to think about the incentives for individual actors to undertake innovation

that then maps into an aggregate picture. In this framework, which we refer

to as the expanding variety setting, innovators conjure up new ideas and are

granted exclusive rights to employ them in production.

At this point, they can either undertake production themselves, if they have

the means, or sell the idea to a producer. Each new idea produces a new and

different type of product. All of these intermediate products are then aggregated

into a single final product which is then sold to consumers. Let intermediate

goods be denoted by yj for j ∈ [0, A], and consider an aggregate production
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function of the form

Y =

[∫ A

0

x
ε−1
ε

j dj

] ε
ε−1

(1)

This is known as the Dixit-Stiglitz (sometimes Armington) aggregator, and the

parameter ε is referred to the elasticity of substitution. The final good, whose

price is normalized to 1 in each period, is competitively produced by a continuum

of firms. Meanwhile, the price of intermediate goods will be pj . Consider the

profit maximization problem of a final good producing firm

Π = max
xj

[∫ A

0

x
ε−1
ε

j dj

] ε
ε−1

−
∫ A

0

pjxjdj

It can be verified that this results in an demand function of the form

xj(pj) = p−εj Y (2)

With this result in hand, we can now turn to the problem of the intermediate

producer. The intermediate firms operate as monopolists. You can think of

this having been granted an infinite length patent on the idea they invented (or

bought from an inventor). They produce xj using labor `j , which can be hired

at wage w, according to the linear production function xj = q`j . Their profit

maximization problem is given by

πj = max
xj

{pj(xj)xj − w(xj/q)}

Using the demand function from Equation (2), we can derive the optimal pro-

duction choices

x = xj =

[(
ε− 1

ε

)
q

w

]ε
Y (3)

4



So in fact production is the same across all product lines, which should not be

surprising as they were ex ante identical. The resulting profit accrued is

π = πj =
1

ε

[(
ε− 1

ε

)
q

w

]ε−1
Y (4)

Mapping this back into the aggregate, and supposing that a fraction P of workers

engage in goods production, we find that

Y = A
ε

ε−1x = A
1

ε−1 qP

which implies that g =
(

1
ε−1

)
gA. The breakdown of total output between profit

and labor (there is no capital) is

Aπ

Y
=

1

ε
and

wP

Y
=
ε− 1

ε
(5)

At this point, we’ve completely solved the equilibrium for static production side.

The most important quantity to be used here is the profit of the intermediate

good producing firms. This will determine the incentives for the creation of new

products. The present value of owning a product line is given by

rV = π + V̇

Why do we use r as the discount rate for the firm, rather than ρ? You can

also think of the above as a ”no arbitrage” condition. Given V dollars, you can

either put it in the bank and get return rV or you can buy a share of the firm

for a short period, getting the flow profits and any change in value that occurs.

From the above, we can see that V and π should grow at the same rate, which

we can show using the above is equal to (2− ε)g, where g is the growth rate of
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output Y . Thus we have

V =
π

r + (ε− 2)g

Now let’s introduce some innovators. We’ll assume that their costs are linear and

scale invariant, so they can achieve a flow rate of innovation Aτ by employing

cτ units of research labor. Thus we can immediately see that we should have

V A = wc (6)

This gives an aggregate research production function of the form

(ε− 1)g = gA =
Ȧ

A
=
R

c

As we saw in the last lecture, letting the intertemporal elasticity θ = 1, the Euler

equation of the consumer ensures that r = ρ+g. Substituting Equation (5) into

Equation (6), we find

1/ε

ρ+ (ε− 1)g
=

(
ε− 1

ε

)(
c

L−R

)

When there is more research, growth will be faster, meaning future profits will

be shared amongst a smaller set of firms, depressing current product line valua-

tions. Meanwhile, there will be less labor for production, which will put upward

pressure on wages. Thus there is either zero research or the above equation

holds yielding growth rate of

g∗ =
1

ε

[(
1

ε− 1

)
L

c
− ρ
]

Notice that this is decreasing in ε. As ε becomes larger, products are more

substitutable, so the incentive to create the new ones falls, leading to a drop in

the growth rate.
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2.1 Optimality

This model has some interesting optimality properties. Consider the problem

of the social planner. In the most general setting, one must choose the levels

of production for each product line xj , as well as the split between goods pro-

duction labor P and research labor R. However, it is easy to show that any

optimal choice still features xj = x for all j. Thus we need only make the choice

between production and research. Given a constant growth rate, the path of

output will be Y (t) = Y (0) exp(gt). This leads to welfare of

W =

∫ ∞
0

(
[Y (0) exp(gt)]

1−θ − 1

1− θ

)
exp(−ρt)dt (7)

=

(
ρ

ρ+ (θ − 1)g

)(
1

ρ

)[
g

ρ
+
Y (0)1−θ − 1

1− θ

]
(8)

In our setting, we have

Y (0) = q(L−R) and g =

(
1

ε− 1

)
R

c

This is a fairly intricate problem in general, but for the special case where θ = 1,

meaning the instantaneous utility function is log(c), we arrive at

gS =

(
1

ε− 1

)
L

c
− ρ

which we can see now is strictly greater than g∗ for all ε > 1. So there is in

general an underinvestment in research in this type of model.

3 Quality Ladders

Next we’ll discuss a related class of models called quality ladder models. These

have a similar product market structure, but a slightly different source of growth.
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Instead of generating growth through the invention of new product lines, we

improve an existing fixed set of product lines. When an innovator f comes

up with a new idea, a randomly chosen product line j sees an improvement in

productivity, meaning

qjf (t+ ∆) = λqjf (t)

where λ > 1 is referred to as the innovation step size. At any given time, let

the lead producer in a product line have productivity qj = maxf {qjf}.

Suppose that we have the same product market setup as in the previous section,

but fix the mass of products to A = 1 and let the elasticity of substitution be

ε = 1. This results in the logarithmic form

Y = exp

[∫ 1

0

log(xj)dj

]

Additionally, let each product line have its own individual productivity qi. Be-

fore, each intermediate producer operated as a monopolist. Here however, there

will always be some trailing competition in the form of the person who you just

edged out to become lead producer.

We will assume that competing intermediate producers engage in Bertrand com-

petition. The marginal cost of the lead producer is w/qj , while that of the second

best producer is λw/qj . Thus the lead producer will set his price equal to the

next best producer’s marginal cost meaning pj = λw/qj . Using Equation (2),

this results a production level of

xj =
( qj
λw

)
Y (9)
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The resulting profits and labor utilization are then

π =
(
1− λ−1

)
Y and P = ` =

(
1

λw

)
Y

Notice that the above two equations also characterize the breakdown of aggre-

gate income into wages and firm profits.

Now let’s consider the value of acquiring a new product line. Let the aggregate

rate of innovation be τ . In this case, starting from the discrete time approxi-

mation, we’ll have

V (t) = ∆π + ∆τ · 0 + (1−∆τ) exp(−r∆)V (t+ ∆)

Rearranging terms, we find

[
1− exp(−r∆)

∆

]
V (t) = π(λq)− τ exp(−r∆)

[
V (t+ ∆) +

[
V (t+ ∆)− V (t)

∆

]]

Taking the limit as ∆→ 0 yields

rV = π − τV + V̇

We can use the same trick we used in the previous model, or we can define a

normalized value function V = Ṽ Y . Because V will growing at the same rate

as Y , Ṽ will be time invariant and V̇ = gV = gṼ Y . In this case, we can derive

Ṽ =
1− λ−1

r − g + τ

As before, assume that the innovation technology is linear. However, this time

the innovator can achieve a flow rate of innovation τ by employing cτ units of

research labor. This yields the no arbitrage condition V = wc. In normalized

terms, this becomes Ṽ = w̃c.
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What will the aggregate growth rate in the economy be? That is a function of

the step size λ and the innovation rate τ . Because product lines are targeted

randomly and there is a unit mass of them, the probability that any given

product line will receive an innovation is also τ . Total output is

Y = exp

(∫ 1

0

log(xj)dj

)
= exp

(∫ 1

0

[log(qj) + log(`j)] dj

)
= QP

where

Q ≡ exp

(∫ 1

0

log(qj)dj

)

As P is constant on a balanced growth path, all growth will come from changes

in Q, the aggregated productivity index. We can compute the growth rate using

g =
Q̇

Q
=
∂ log(Q)

∂t

This evolves according to

log(Q(t+ ∆)) =

∫ 1

0

log(qj(t+ ∆))dj =

∫ 1

0

[∆τ log(λqj(t)) + (1−∆τ) log(qj(t))]

= ∆τ log(λ) + log(Q(t))

Thus we arrive at the expression

g = τ log(λ)

Finally we arrive at an equation characterizing the equilibrium

1− λ−1

ρ+ τ
=

c

λ(L−R)
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So either we have g = 0 or we have the interior solution

g =
log(λ)

λ

[
(λ− 1)

L

c
− ρ
]

3.1 Optimality

We will now briefly discuss the optimality properties of this model. Using the

expression from Equation (7), again using θ = 1, and the conditions

Y (0) = Q(0)(L−R) and g = log(λ)(R/c)

yields an analogous expression for the optimal growth rate in this model

gS = log(λ)

(
L

c

)
− ρ

Now the question is, what forces are shaping the incentives to innovate and

how do they differ from the considerations of the social planner. There are

two distinct distortions at work here. First is the consumer surplus effect.

Because each innovation builds upon the previous one, these increments last

forever. However, the firm only enjoys the profits from them for a short period.

This results in insufficient incentives for innovation. Second is the business

stealing effect. When a firm improves the technology in a product line by

10%, they are rewarded with 110% of the original revenues.

In the end, the innovation rate is too high for very small or very large values

of λ, while it is too low for intermediate values. When λ is small, it’s clear

that the rewards for innovation are far too large compared to the productivity

increment. When λ is large, the actual incidence of business stealing is large,

meaning firms are rewarded only in a short time increment for a productivity

improvement that lasts forever.
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3.2 Correspondence

For relatively small values of λ, we have log(λ) ≈ λ− 1. In this case, if consider

the expanding variety model with ε = λ
λ−1 , the predictions are identical, both

in terms of the equilibrium and optimal values for the growth rate and research

labor allocation. Essentially, when ε is high, products are highly substitutable,

which is analogous to a low innovation step size environment. So the differences

between these two classes of models may in the end be more a matter of in-

terpretation than observational differences. See Grossman and Helpman (1991)

for an interesting discussion of this notion.
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