
Economics 101
Lecture 9 - Risk Sharing and Public Goods

1 Uncertainty in Equilibrium

Last lecture we introduced uncertainty and what kinds of preferences people
might have over lotteries. We considered the case of a single person who
could buy insurance from a risk-neutral insurance firm.

You might consider this an artificial construction, so let’s see what we
can do with just two risk-averse agents. Suppose there are two states of the
world that can be realized and agents have endowments that depend on that
state.

One example is that maybe useful nuclear fusion is invented in the next
ten years (or maybe not). If you are a physicist or a nuclear engineer, your
endowment (i.e., your income) would be higher if such a technology came
about. If you are a coal miner, your endowment would be lower if this comes
about.

Before this uncertainty is realized, agents can sign contracts with one
another along the lines of “If fusion is realized, I’ll give you $5”. In this
spirit, we think of money in each state as distinct goods. A unit of state 1
good is really just a contract promising that you will be paid $1 in the event
that state one occurs, and similarly for state 2. The value of your endowment
comes from being able to sell such contracts.

Thus our Walrasian budget constraint is the usual
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for agent two. Here p1 and p2 are the prices of the above contracts.
Recall that because of our good friend John von Neumann, we can repre-

sent preferences over lotteries in a simple linear form. Here the uncertainty
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is over what state is realized. In state one, agent one consumes c11, while he
consumes c12 in state two.

Until now, we have taken probabilities as given from on high. However,
clearly reasonable people can disagree about the probability of certain events
(wars, natural disasters, etc.). In the case where probabilities are commonly
known and agreed upon, we say that agents have objective probabilities. In
the case where agents are free to have different probabilities, we call these
subjective probabilities or beliefs.

So then if π1 and π2 are the agents’ beliefs about the probability of state
one occurring, utility is
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Let’s go ahead and solve for the optimal consumption

L1 = π1u11(c
1
1) + (1− π1)u12(c

1
2) + λ1(p1e

1
1 + p2e

1
2 − p1c11 − p2c12)

⇒ ∂L1

∂c11
= π1u11(c

1
1)− p1λ1 = 0 ⇒ π1u11(c

1
1) = p1λ

1

⇒ ∂L1

∂c12
= (1− π1)u12(c

1
2)− p2λ1 = 0 ⇒ (1− π1)u12(c

1
2) = p2λ

1

⇒
(

π1

1− π1

)
u11(c

1
1)

u12(c
1
2)

=
p1
p2

Doing the same for agent two would give us(
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Combining these, we get the same old MRS condition(
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Now let’s drop this pretense of subjectivity and say π1 = π2, that is, the
agents agree on the probability of each state. This yields
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To close the model, we simply have to impose market clearing. That is, in
any given state, the total consumption in that state must equal the total
endowment. Therefore

c11 + c21 = e11 + e21 = e1

c12 + c22 = e12 + e22 = e2

Substituting into the above, we find

u11(c
1
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u22(e2 − c12)

This equation is quite elegant actually. Consider the possible endowments. If
the aggregate endowment differs across states, then we say there is aggregate uncertainty.

In the case where there is no aggregate uncertainty, then e1 = e2 = e
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In fact, c11 = c12 is a solution to this equation. In that case, we also have
c21 = c22. This means that each agent consumes the same thing, regardless of
the state. They perfectly insure each other.

Example 1 (Cobb-Douglas). Consider the case where the Bernoulli utility
function is u(x) = log(x). Then utility is

u1(c11, c
1
2) = π1 log(c11) + (1− π1) log(c12)

Now let’s maximize this

L1 = π1 log(c11) + (1− π1) log(c12) + λ1(p1e
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As always we are free to normalize prices to (p1, p2) = (1, p). Therefore

c11 = π1(e11 + pe12) and c12 =
(1− π1)(e11 + pe12)

p

and analogously for agent two. Plugging this into the market clearing con-
dition for good one

π1(e11 + pe12) + π2(e21 + pe22) = e11 + e21

⇒ p =
(1− π1)e11 + (1− π2)e21

π1e12 + π2e22

Now let’s return to the objective probability case where π1 = π2 = π. Here
we get
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Plugging this back into the consumption equations
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So if we let each person’s expected fraction of the aggregate endowment be
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4



Since we allow for the aggregate endowment to vary across states, agents will
not have the same consumption across states. But they will still have the
same fraction of the aggregate endowment across states. This fraction will
be equal to their expected fraction of the aggregate endowment. Notice that
when we do have e1 = e2

c11 = c12 = πe11 + (1− π)e12
c21 = c22 = πe21 + (1− π)e22

Agents consume their expected endowment in both states and we have the
perfect consumption smoothing result we saw earlier.

Now consider an alternative scenario. Agents have the same endowment
within each states, but this common endowment varies across states. In
particular, each agent starts with half the aggregate endowment

e11 = e21 =
e1
2

e12 = e22 =
e2
2

In this case the price is
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)
Plugging this into consumption
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]
So each person consumes a fraction of the aggregate endowment equal to
their relative belief that that state will occur.

It may help to put the above exercises in perspective. In the case of
equal endowments but differing subjective probabilities, the intuition is fairly
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intuitive. Imagine you have two agents and one has a higher belief that a
certain sports team or political candidate will win a contest. The two can
make a bet with one another where the agent wit the higher belief is paid
in the event of a victory and pays out in the event of a loss. This is exactly
what we derive above.

It is important to remember that the agents don’t care intrinsically about
which state is realized. In a real world sports example, people might derive
actual utility from the mere fact that a particular team wins, while we actu-
ally rule that out here. This could only happen in our framework if the fate
of the team affected them financially.

Now let’s consider the case of common beliefs and differing endowments.
Think back to the nuclear fusion example. Before it is realized whether fusion
takes off, the coal miner and the nuclear engineer could write a contract where
the nuclear engineer pays the coal miner if it does take off and the coal miner
pays the nuclear engineer in the opposite case.

In practice, many of these contracts are never written because it is sim-
ple too costly to consider every possible eventuality. This is often called
incomplete markets. Other times, these contracts are not written due to
incentive problems. We’ll get into that more in the next lecture.

2 Public Goods

Sadly, it is now time to leave the safe confines of the First Welfare Theorem.
Up until now, we have assumed that individual consumption has no effect on
other agents’ utility. Now we will introduce a fairly rudimentary notion of
public good. The level of public good will be denoted by G. Each agent will
have utility over their own consumption and x and the level of the public
good. Producing a quantity G of public goods costs c(G) units of the private
good. We’re interested in finding the Pareto optimal level of public good.
Thus we wish to maximize

W (x1, x2, G|β) = βu1(x1, G) + (1− β)u2(x2, G)

subject to the feasibility constraint

x1 + x2 + c(G) = e
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where β is the weight that the social planner places on agent one. So the
Lagrangian is

L = βu1(x1, G) + (1− β)u2(x2, G) + λ(e− x1 − x2 − c(G))

⇒ ∂L
∂x1

= βu1x(x1, G)− λ = 0

⇒ ∂L
∂x2

= (1− β)u2x(x2, G)− λ = 0

⇒ ∂L
∂G

= βu1G(x1, G) + (1− β)u2G(x2, G)− λc′(G) = 0

We can rearrange these to get

u1x(x1, G) =
λ

β
and u2x(x2, G) =

λ

1− β

⇒
(
β

λ

)
u1G(x1, G) +

(
1− β
λ

)
u2G(x2, G) = c′(G)

Then we arrive at

u1G(x1, G)

u1x(x1, G)
+
u2G(x2, G)

u2x(x2, G)
= c′(G)

⇒ u1x(x1, G)

u2x(x2, G)
=

1− β
β

The first equation above governs the level of public good production, while
the second governs the the allocation of private goods conditional on this
level. In general, there are many efficient levels of public good production.
However, suppose utility is quasi-linear, that is

ui(xi, G) = xi + vi(G)

So that ux(xi, G) = 1 and uG(x,G) = v′(G). Then the first condition be-
comes

v′1(G) + v′2(G) = c′(G)

and the private good allocation is irrelevant. If we assume that vi is concave
and c is convex, then the above equation has a unique solution in G.
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Example 2. Let utility be given by

ui(xi, G) = log(xi) + αi log(G)

and the cost of producing public goods by c(G) = G. The Lagrangian is

L = β [log(x1) + α1 log(G)] + (1− β) [log(x2) + α2 log(G)] + λ(e− x1 − x2 −G)

= β log(x1) + (1− β) log(x2) + ᾱ(β) log(G) + λ(e− x1 − x2 −G)

where ᾱ(β) = βα1 + (1− β)α2 is the mean value of α. This yields

∂L
∂x1

=
β

x1
− λ = 0

∂L
∂x2

=
1− β
x2
− λ = 0

∂L
∂G

=
ᾱ(β)

G
− λ = 0

Plugging these into the feasibility constraint

e =
β

λ
+
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λ

+
ᾱ(β)

λ

⇒ λ =
1 + ᾱ(β)

e

Now we can use this to find G

G =
ᾱ(β)

λ
=

ᾱ(β)e

1 + ᾱ(β)
=

e

ᾱ(β)−1 + 1

and private consumption

x1 =
β

λ
=

βe

1 + ᾱ(β)

x2 =
1− β
λ

=
(1− β)e

1 + ᾱ(β)

Now consider a voluntary contribution scheme for public good provision.
Each agent chooses a level gi to contribute to public good provision, so G is
determined by

c(G) = g1 + g2 ⇒ G = c−1(g1 + g2)
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We have the same utility structure as before, so for given g1 and g2

u1(g1, g2) = u1(e1 − g1, c−1(g1 + g2))

u2(g1, g2) = u1(e2 − g2, c−1(g1 + g2))

Each agent chooses their optimal gi give the other agent’s choice (Nash equi-
librium). Taking the derivative yields

∂u1
∂g1

: u1x(x1, G) =
(
c−1

)′
(g1 + g2)u

1
G(x1, G) =

u1G(x1, G)

c′(G)

∂u2
∂g2

: u2x(x2, G) =
(
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)′
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2
G(x1, G) =

u2G(x2, G)

c′(G)

Rearranging these yields

u1G(x1, G)

u1x(x1, G)
=
u2G(x2, G)

u2x(x2, G)
= c′(G)

Comparing this to the expression for efficiency, we can see that there is an
underprovision of the public good by virtue of the fact that c is a convex
function (c′ is increasing). In the quasi-linear case, the above condition be-
comes

v′1(G) = v′2(G) = c′(G)

Example 3. Using the same setup as the previous example, we will now
find the equilibrium in the voluntary provision case. The utilities can be
expressed as

u1(g1, g2) = log(e1 − g1) + α1 log(g1 + g2)

u2(g1, g2) = log(e2 − g2) + α2 log(g1 + g2)

Taking derivatives, we find

∂u1

∂g1
=
−1

e1 − g1
+

α1

g1 + g2
= 0⇒ G

α1
= e1 − g1

∂u2

∂g2
=
−1

e2 − g2
+

α2

g1 + g2
= 0⇒ G

α2
= e2 − g2
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Adding together yields [
1

α1
+

1

α2

]
G = e−G

⇒ G =
e[

1
α1 + 1

α2

]
+ 1

You can actually show that this is lower than the efficient level for any β.
I’ll leave that as an exercise to the reader.
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