
Economics 101
Lecture 5 - Firms and Production

1 The Second Welfare Theorem

Last week we proved the First Basic Welfare Theorem, which states that
under fairly weak assumptions, a Walrasian equilibrium is Pareto efficient.
Now we will consider a result that can be thought of as a partial converse to
that statement.

Theorem 1 (Second Basic Welfare Theorem). When utility is concave, given
any Pareto efficient allocation x, there is some initial allocation (endow-
ments) e1, . . . , eM that induces a Walrasian equilibrium with allocation x.

So the Walrasian market can be thought of as a mechanism through which
to achieve Pareto efficient allocations. Choosing the desired allocation is a
matter of choosing the correct endowment. One additional implication of
this result is that if the initial endowment itself is Pareto efficient, then there
will be an equilibrium at that point for some prices p?.

In terms of policy, this result suggests that inducing desired allocation
can be achieved using endowment transfers rather than taxation schemes.

Example 1. Recall the 2 good, 2 allocation economy with Cobb-Douglas
consumers that we discussed last lecture. The equilibrium price we found
was

p? =
(1− α1)e11 + (1− α2)e21

α1e12 + α2e22

and the allocation is

xk1 = αk(ek1 + p?ek2) and xk2 = (1− αk)
(
ek1 + p?ek2

p?

)
Consider a set of allocations index by z ∈ [0, 1]

e11 = z and e12 = z

e21 = 1− z and e22 = 1− z
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In the Edgeworth box, this maps out a straight line from agent 1’s origin to
agent 2’s origin. With this allocation, the equilibrium price is

p? =
(1− α1)z + (1− α2)(1− z)

α1z + α2(1− z)

and the allocation is

x11 = α1z(1 + p?) and x12 = (1− α1)z

(
1 + p?

p?

)
x21 = α2(1− z)(1 + p?) and x22 = (1− α2)(1− z)

(
1 + p?

p?

)
With prices, we can derive

1 + p? =
2

α1z + α2(1− z)
and

1 + p?

p?
=

2

(1− α1)z + (1− α2)(1− z)

Thus the allocation can be expressed as

x11 =
α1z

α1z + α2(1− z)
and x12 =

(1− α1)z

(1− α1)z + (1− α2)(1− z)

x21 =
α2(1− z)

α1z + α2(1− z)
and x22 =

(1− α2)(1− z)

(1− α1)z + (1− α2)(1− z)

A Pareto efficient allocation must be feasible, which is evidently satisfied
here. In addition, we saw last lecture that any Pareto efficient allocation
must equate the marginal rates of substitution of each agent. In this setting
that means

α1

1− α1
· x

1
2

x11
=

α2

1− α2
· x

2
2

x21

You can verify that indeed both marginal rates of substitution are equal to

(1− α1)z + (1− α2)(1− z)

α1z + α2(1− z)

Therefore, all of these allocations are Pareto efficient, as we already knew
from the first welfare theorem. Looking back to our original characterization
of Pareto efficiency where we maximize W (x|β), we can achieve the allocation
resulting from a particular β by simply setting z = β.
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As a final note, it is important to be aware that the second welfare the-
orem requires that utility be concave. That is, if concavity is not satisfied
for each consumer, there can be Pareto efficient allocations that cannot be
attained as a Walrasian equilibrium for any endowments.

We know that at a Pareto efficient allocation, the marginal rates of sub-
stitution must be equal between the consumers. Furthermore, if it were to be
a Walrasian equilibrium, the price ratio must also be equal to this common
MRS value. If utility is concave, it is sufficient to conclude that consumers
will optimally choose this allocation given these prices. However, without
concavity, one of the consumers might choose some other point, meaning the
desired point is not a Walrasian equilibrium.

2 Production

Up until now, we’ve been dealing with consumers with static, exogenous
endowments who trade with one another in the Walrasian market. Obviously,
this missed a lot of what goes on in the economy. Firms and production are
an important component.

To begin, we introduce an abstract notion of a firm. Firms maximize mon-
etary profit by assumption. Since we have no stochastic elements, we don’t
have to worry about bankruptcy. A firm is characterized by a production function,
which tells us how much of a certain output we get (say cars) for a given
amount of inputs (say steel and labor). Formally, we say y = f(x), where
x and y are vectors of inputs and outputs, respectively. Usually, y is one-
dimensional.

As with consumers, firms face certain exogenously given prices. Take note
that this is a very strong assumption in certain conditions. We may weaken
this one later on. Let the price vector of outputs be p and the price vector
of inputs be w (as is done in Varian). A firm’s profits are then

π(x) = p · f(x)− w · x

=

NO∑
i=1

pifi(x)−
NI∑
j=1

wjxj

The only constraint is that xj ≥ 0 for all j, which we will generally omit.
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The firm’s profit maximization problem is then

max
x∈RNI+

p · f(x)− w · x

We can use Lagrangian techniques to derive conditions for optimal produc-
tion. But first, we need to ensure that the conditions to use them hold. We
need to ensure that profit is concave. To get this, we must assume that the
production function is concave. For arbitrary x and y, we have

π(θx+ (1− θ)y) = p · f(θx+ (1− θ)y)− w · (θx+ (1− θ)y)

= p · f(θx+ (1− θ)y)− θw · x− (1− θ)w · y
≥ p · [θf(x) + (1− θ)f(y)]− θw · x− (1− θ)w · y
= θ [p · f(x)− w · x] + (1− θ) [p · f(y)− w · y]

= θπ(x) + (1− θ)π(y)

Thus profit is concave and we are free to use Lagrangian techniques so long
as the production function is concave. Since there are no constraints, the
Lagrangian is just the production function. For now, let’s assume that there
is only one output, so that

L = p · f(x)− w · x = pf(x)−
∑
i

wixi

Taking derivatives

∂L
∂xi

= pf(x)i − wi = 0

⇒ fi(x) =
wi
p

So the first derivative of the production function with respect to xi, which
we call the marginal product of good i, is equal to the ratio of the price of
the output to the price of input i.

Example 2. You thought you had escaped Cobb-Douglas, but it’s actually
a production function as well. It has the same functional form as the utility
function, except we can’t take logs as before

f(x1, x2) = Axα1x
β
2

4



where α > 0, β > 0, and α + β < 1. Thus profits are

π(x) = pf(x)− w · x
= pAxα1x

β
2 − w1x1 − w2x2

Taking derivatives, we get

∂

∂x1
: Apαxα−11 xβ2 − w1 = 0

∂

∂x2
: Apβxα1x

β−1
2 − w2 = 0

These imply

αApxα1x
β
2 = w1x1

βApxα1x
β
2 = w2x2

Diving, we find

α

β
=
w1

w2

· x1
x2

⇒ x1
x2

=
w2

w1

· α
β

From here we can use the first order condition for x2

Aβp

(
x1
x2

)α
xα+β2 = w2x2

⇒ Aβp

(
w2

w1

)α(
α

1− α

)α
= w2x

1−α−β
2

⇒ x2 =

[
Aβ

(
p

w2

)(
w2

w1

)α(
α

β

)α] 1
1−α−β

and by symmetry

x1 =

[
Aα

(
p

w1

)(
w1

w2

)β (
β

α

)β] 1
1−α−β

So you can see that things kind of blow up if α + β ≥ 1.
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2.1 An Alternative Interpretation

Another way to think about production technologies is to use the concept
of a production set. A production set is similar to a budget set, but for
producers. It is simply the set of points (x, y) for which it is possible to
produce at least y units of output using x units of input. For a production
function f(x), the production set is simply

Y =
{

(x, y) ∈ RNI
+ × RNO

+

∣∣y ≤ f(x)
}

We can use this to imagine what the optimal choice will be. Since profits are

π(x, y) = p · y − w · x

The optimal choice is the (x, y) ∈ Y that yields the highest value for profit

max
(x,y)∈Y

p · y − w · x

In the case of 1 input and 1 output, consider a set of points in Y that yields
some constant of profit π̄, which we can call an isoprofit line. This will satisfy

π̄ = py − wx

⇒ y =
π̄

p
+

(
w

p

)
x

Maximizing profit subject to being in Y will result in a point where the slope
of the isoprofit line is equal to the slope of the boundary of Y (Actually, this
is only true when Y is convex set, which is the case when f is a concave
function.) As it happens, the slope of the boundary of Y is equal to the
marginal product f ′(x). So we arrive at the same condition equating the
marginal product to the ratio of prices of inputs to outputs.

3 Returns to Scale

One important property of production functions is how they behave locally
at various levels of production. Along these lines, we define some terms to
classify this behavior.
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Decreasing Returns to Scale: For fixed input proportions, as inputs are
scaled up, output scales up at a decreasing rate. Formally, for all x1, x2, and
t > 1

tf(x1, x2) > f(tx1, tx2)

For instance, if you go from using (x1, x2) as inputs to using (2x1, 2x2),
your new production is less than 2 times the original production, i.e.

f(2x1, 2x2) < 2f(x1, x2)

The other two cases are

Increasing Returns to Scale: For fixed input proportions, as inputs are
scaled up, output scales up at a increasing rate. Formally, for all x1, x2, and
t > 1

tf(x1, x2) < f(tx1, tx2)

Constant Returns to Scale: For fixed input proportions, as inputs are
scaled up, output scales up at a constant rate. Formally, for all x1, x2, and
t > 1

tf(x1, x2) = f(tx1, tx2)

We almost always assume either decreasing or constant returns to scale.
The most common assumption is constant returns.

Example 3. Consider varying the scale parameter with a Cobb-Douglas
production function

f(tx1, tx2) = A(tx1)
α(tx2)

β

= Axα1x
β
2 t
α+β

= tα+βf(x1, x2)

So the returns to scale condition becomes

tf(x1, x2) ≷ f(tx1, tx2)

⇔ tf(x1, x2) ≷ tα+βf(x1, x2)

⇔ t ≷ tα+β

⇔ 1 ≷ α + β
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with the last line coming from the fact that t > 1. So the returns to scale
can be characterized by

α + β < 1 → decreasing returns

α + β = 1 → constant returns

α + β > 1 → increasing returns

4 Cost Minimization

Often it is useful or insightful to consider the profit maximization problem
as two nested subproblems. First, there is cost minimization: given a certain
target level of output y, we wish to choose inputs x so as to produce exactly
y units of output for the least cost. Here, the cost is simply that of buying
the goods at their market prices

w1x1 + w2x2

The minimization problem is then

C(y) =

{
min
x1,x2

w1x1 + w2x2

s.t. y = f(x1, x2)

Once we have this defined, we can then recast profit maximization as

max
y

py − C(y)

Let’s use Lagrangian techniques to solve the cost minimization problem

L = w1x1 + w2x2 + λ [y − f(x1, x2)]

Taking derivatives

∂L
∂x1

= w1 − λf1(x1, x2) = 0

∂L
∂x2

= w2 − λf2(x1, x2) = 0

Rearranging and dividing, we find the condition

f1(x1, x2)

f2(x1, x2)
=
w1

w2

The ratio of the marginal products equals the ratio of the input prices. This
is analogous to an MRS condition for production.
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Example 4. Let’s look again at a Cobb-Douglas production function

f(x1, x2) = Axα1x
β
2

The Lagrangian for the cost minimization problem is

L = w1x1 + w2x2 + λ(y − Axα1x
β
2 )

Taking derivatives

∂L
∂x1

= w1 − λAαxα−11 xβ2 = 0

∂L
∂x2

= w2 − λAβxα1x
β−1
2 = 0

These imply

w1x1 = αλAxα1x
β
2 = αλy

w2x2 = βλAxα1x
β
2 = βλy

Dividing yields

w1x1
w2x2

=
α

β

⇒ x2 =

(
w1

w2

)(
β

α

)
x1

⇒ y = Axα1x
β
1

[(
w1

w2

)(
β

α

)]β
⇒ x1 =

( y
A

) 1
α+β

[(
w1

w2

)(
β

α

)] β
α+β

By symmetry

⇒ x2 =
( y
A

) 1
α+β

[(
w2

w1

)(
α

β

)] α
α+β
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Thus the total cost is

C = w1x1 + w2x2

=
( y
A

) 1
α+β

w
α

α+β

1 w
β

α+β

2

[(
β

α

) β
α+β

+

(
α

β

) α
α+β

]

=

(
ywα1w

β
2

A

) 1
α+beta

(
α + β

α
β

α+β β
α

α+β

)

= (α + β)

[( y
A

)(w1

β

)α (w2

α

)β] 1
α+β

= Kw
α

α+β

1 w
β

α+β

2 y
1

α+β

where K is some constant. So we can see that input price increases raise the
cost of producing a fixed y. Furthermore, producing more y costs more for
fixed input prices.

4.1 Relationship with Returns to Scale

A few moments of contemplation will reveal a linkage between cost functions
and returns to scale. For any y, let C(y) be the cost of the optimal choices
of x1 and x2, i.e., the minimal cost.

If C(y) is linear, producing twice as much will simply cost twice as much,
meaning we use twice as many inputs, thus the technology satisfies constant
returns to scale. If C(y) is superlinear (convex), then producing twice as
much costs more than twice as much, thus we are in the case of decreasing
returns to scale. Finally, if C(y) is sublinear (concave), then producing twice
as much costs less than twice as much, so the technology exhibits increasing
returns to scale.

Another way to think about this is to define average cost

AC(y) =
C(y)

y

This is just the per-unit cost of producing y. If f(x1, x2) has constant returns,
then C(y) is linear and AC(y) is constant. If f has decreasing returns, C(y)
is superlinear, meaning AC(y) is increasing. If f has increasing returns, C(y)
is sublinear, so AC(y) is decreasing.
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Example 5. Recall that the cost function for Cobb-Douglas was of the form

C(y) = Ky
1

α+β

We can see that the concavity/convexity of C(y) depends on whether α+β ≷
1, the same condition that determines its returns to scale. Average costs are
of the form

AC(y) = Ky
1−α−β
α+β

which again comports with the discussing on returns to scale.
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