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Abstract

We study the optimal design of corporate taxation and R&D policies as a dynamic
mechanism design problem with spillovers. Firms are heterogeneous in their re-
search productivity, i.e., in the efficiency with which they convert a given set of R&D
inputs into successful innovations and that research productivity is private informa-
tion. There are non-internalized technological spillovers across firms, but the asym-
metric information prevents correcting them in the first best way. We highlight that
key parameters for the optimal policies are i) the relative complementarities between
observable R&D investments, unobservable R&D inputs, and firm research produc-
tivity, ii) the dispersion and persistence of firms’ research productivities, and iii) the
magnitude of technological spillovers across firms. We estimate our model using firm-
level data matched to patent data and quantify the optimal policies. In the data, high
research productivity firms get disproportionately higher returns to R&D investments
than lower productivity firms. Very simple innovation policies, such as linear corpo-
rate taxes combined with a nonlinear R&D subsidy – that provides lower marginal
subsidies at higher R&D levels – can do almost as well as the full unrestricted opti-
mal policies. Our formulas and theoretical and numerical methods are more broadly
applicable to the provision of firm incentives in dynamic settings with asymmetric
information and spillovers and to firm taxation more generally.
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1 Introduction

Governments all over the world attempt to foster innovation. In many countries, they intervene
in the R&D process of private businesses through a wide variety of policies, including, but not
limited to, tax credits, tax deductions, direct grants for research, contracting with private firms,
subsidies for R&D costs, or direct funding of research. The sheer scale of public resources spent
on R&D and the variety of the policies thus funded raises the question of what the right design
of R&D policies should be.

One major challenge for innovation policy is asymmetric information. The quality of a firm’s
organization, management, processes or ideas – which shape its innovation outcomes, condi-
tional on inputs – are private information and very difficult for outside parties, including the
government, to observe.1 One approach for addressing this asymmetric information problem is
that adopted by Venture Capitalist firms, which perform very hands-on and thorough screening,
and provide staged financing subject to intense monitoring. But this intensive hands-on approach
is not easily scalable and thus not applicable when it comes to thinking about large-scale govern-
ment policies. The innovation literature has extensively addressed how to deal with spillovers
from innovation, but it has dealt much less with asymmetric information about firms and how
to screen firms that are good at innovation from bad ones.

In this paper study the optimal design of taxation and R&D policies under asymmetric in-
formation. We use new methods from the public economics literature, theoretical advances of
mechanism design, and firm-level data matched to patent data to discipline and quantify our
analysis. We build a framework that captures this essential aspect of asymmetric information
in innovation and addresses the following questions theoretically and quantitatively: Without
restricting the set of policy tools a priori, what are the best policies for innovation? What key
parameters do optimal policies depend on? Are there simple policies that are almost as good as
the fully optimal ones?

There are two market failures in our setting that leave scope for some form of government
intervention: First, there are technology spillovers between firms, whereby one firm’s innovations
affect other firms’ productivities. Second, innovation is not appropriable and, absent Intellectual
Property Rights (IPR) policy, any firm could use an “idea” embodied in an innovation. IPR policy
may, however, itself create a distortion, as is the case for instance of a patent system that grants
firms monopoly rights.

The main impediment to fixing the market distortions in a non-distortionary way – and the
key feature of our analysis – is asymmetric information. Indeed, firms are heterogeneous in
their research productivity and, importantly, this research productivity is private information
and unobservable to the government. A higher research productivity allows a firm to convert a
given set of research inputs into a better innovation output. In addition, while some of the inputs
into the R&D process are observable (we call them “R&D investment”), others are unobservable

1As shown in the empirical literature, reviewed in Section 2.4.
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(“R&D effort”). The firm’s research productivity evolves stochastically over time. Although the
firm has some advance information about its future productivity, it cannot perfectly foresee it.
As a result, at the time when the firm invests resources in R&D, the innovation outcome that will
result from these R&D investments is yet uncertain.

In a world without private information, the government could perfectly correct for the tech-
nology externality through a Pigouvian subsidy and for the lack of appropriability of innovation
through, for instance, a prize system. The asymmetric information means that the government
needs to take incentive constraints into account when designing its innovation policies and limits
how close the economy can get to full efficiency. We show that the need to screen firms may
starkly modify the recommendations that arise with observable firm types.

Studying optimal policy under asymmetric information in a dynamic R&D investment model
with spillovers is technically involved: we view the tractable model presented in Section 2 to be
one of our contributions. We pose the problem as one of mechanism design, in which we do not
ex ante restrict the policies that the government can use: in this direct revelation mechanism, the
government can directly choose allocations for each firm type, subject only to the asymmetric
information incentive constraints. We build on new mechanism design methods described below
and extend them by offering a new approach to allow for spillovers between agents (firms) in the
presence of asymmetric information.

We first characterize the constrained efficient allocations that arise in this direct revelation
mechanism with spillovers. We find that the optimal incentives for R&D trade-off a Pigouvian
correction for the technology spillover and a correction for the monopoly distortion against the
need to screen good firms from bad ones. How much R&D should optimally be subsidized
depends critically on a key parameter, namely the complementarity of R&D investment to R&D
effort (i.e., the complementarity between observable and unobservable innovation inputs) relative
to the complementarity of R&D investment to firm research productivity. The more complemen-
tary R&D investment is to unobservable firm research productivity, the more rents a firm can
extract if R&D investment is subsidized. This complementarity puts a brake on how well the
government can correct for the technological spillovers and the monopoly distortion. Optimal
screening in this case requires dampening the first-best corrective policies. On the other hand, if
R&D investments are more complementary to unobservable firm R&D effort, they stimulate the
firm to put in more of the unobservable input, which makes the R&D subsidies optimally larger.
The persistence of firms’ research productivity shocks and the strength of spillovers are other key
determinants of the optimal policies. We show that these constrained efficient allocations can be
implemented with a parsimonious corporate income tax function.

We take the model to the data leveraging firm-level data matched to U.S. Patent Office Patent
data. This allows us to measure the inputs into R&D, the production decisions, and the inno-
vation output as captured by patents and their citations. The estimation of our model based on
key data moments lets us to quantify the optimal policies, as well as study how close simpler
innovation policies can come to approximating the full unrestricted mechanism by comparing
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the revenue raised from the full optimum to the one raised by restricted and simpler policies.

In the data, we find that R&D investments are highly complementary to a firm’s research
productivity and that higher productivity firms generate disproportionately more innovation
from any given R&D investment. Since higher productivity firms have a comparative advantage
at innovation, it is better to incentivize R&D investments less for the lower productivity firms, as
this makes mimicking them more attractive for high productivity firms. We discuss how these
incentives translate into “wedges” and then into actual taxes and subsidies.2

Regarding the wedges, on balance, a higher net incentive for R&D for higher research produc-
tivity firms is provided with a lower profit wedge at higher profit levels and a lower R&D wedge
at higher R&D levels. The intuition for why this is the best screening mechanism is that higher
productivity firms are able to generate more profits from the same research investments, and an
allocation with a lower profit wedge and a lower R&D wedge is going to be more attractive to
them than it will be to low productivity firms.

Regarding the taxes and subsidies, a nonlinear, separable Heathcote-Storesletten-Violante
(HSV) type subsidy combined with an HSV-type profit tax performs almost as well as the opti-
mal policy. It features decreasing marginal profit taxes (increasing marginal profit subsidies) at
higher profit levels and decreasing marginal R&D subsidies at higher R&D investment levels and
thus perfectly mimics the shape of the wedges. In fact, quantitatively, the most important feature
is the nonlinearity in the R&D subsidy: making the profit tax linear (and lower) only generates
a small welfare loss. The intuition is that a constant profit tax that is more generous than it
should for low profit firms, and at about the right level for high profit firms does reasonably well
since the loss from giving low profit firms a too generous tax is quantitatively small given that
they make low profits to start with. Thus, linear corporate income taxes– as they are often seen
around the world – can be very close to optimal for innovating firms if combined with the right
nonlinear R&D subsidy.

Related Literature. There is a long-standing static contract theory literature on the regulation
of firms under private information to which our paper contributes (Laffont and Tirole, 1986;
Baron and Myerson, 1982). Very few papers consider the regulation of research and innovation:
Sappington (1982) does so in a simple static model.

Some papers study the corrective role of personal income taxes when there are externalities
such as rents (Rothschild and Scheuer, 2016; Piketty et al., 2014; Lockwood et al., 2017). These
models are static, focus on individuals rather than firms, and consider a relatively blunt tool
(namely, income taxation) because the externality-inducing action cannot be directly taxed or
subsidized.

We contribute also to the new dynamic public finance literature that uses mechanism design
tools to study the dynamic income taxation of agents under idiosyncratic risk. Methodologically

2Wedges measure the distortion in allocations relative to the laissez-faire economy’s allocations and are thus akin
to implicit taxes and subsidies.
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related papers are, among others, Albanesi and Sleet (2006), Farhi and Werning (2013), Golosov,
Tsyvinski, and Werning (2006), Golosov, Tsyvinski, and Werquin (2014), Sachs, Tsyvinski, and
Werquin (2016), and Werquin (2016). Closest are the papers by Stantcheva (2015) and Stantcheva
(2017), which incorporate endogenous investments in human capital into the (personal) dynamic
tax problem. We build on the mechanism design methodology developed in Pavan, Segal, and
Toikka (2014), which we augment with dynamic spillovers and a realistic, infinite-horizon dy-
namic life-cycle model of innovating firms, with technology spillovers, and where the asymmet-
ric information of the firm regarding its research productivity evolves stochastically over time.
We also take into account the private market between intermediate and final goods producers. To
solve the model with spillovers, we extend the two-step approach with an “inner” and “outer”
problem proposed by Rothschild and Scheuer (2013) to this dynamic, infinite-horizon firm set-
ting.

Theoretically, our contributions relative to these aforementioned lines of work are, first, the
addition of spillovers between agents (in our case, firms). Because of this important extension, the
solution methods are different, theoretically and computationally. Second, we also provide what
is an entirely new and general framework to study the taxation of firms that captures key ele-
ments such as market power, investments, production, heterogeneity in productivity, intellectual
property, and asymmetric information. We also allow for an infinite horizon. This framework is
very malleable: we illustrate several possible extensions in Online Appendix OA.3 and depend-
ing on the question at hand, parts of it can also be shut off. In particular, our model could be
used to study firm taxation more broadly, when the main goal is not to incentivize innovation,
but when firms’ have unobservable and stochastic productivity types. Computationally, we take
the major step to fully estimate this dynamic model with spillovers in the data, giving precise
empirical content to the variables in our model thanks to the match between patent data and
firm-level data.

Grossman et al. (2013) study the optimal time path of R&D subsidies in a standard semi-
endogenous growth model and the welfare loss from implementing the long-run optimal invari-
ant policy. There are several key differences to our setting: the authors adopt a Ramsey-approach
(linear policies) where they parameterize the policies ex ante and have numerical solutions. We
adopt a mechanism design approach. They do not incorporate heterogeneity in and private
information about firms’ productivities.

We also use findings from the empirical literature on R&D and productivity to discipline our
model and quantitative estimation (Goolsbee, 1998; Bloom et al., 2002; Bloom and Griffith, 2001;
Bloom et al., 2002). Bloom and Van Reenen (2007), Bloom et al. (2012), and Bloom et al. (2013))
lends support to the idea that firms are heterogeneous in terms of the efficiency with which they
can put their resources to productive use, and that these differences may be exceedingly difficult
for the government or regulator to see. Several papers document the gap between the private and
social returns to R&D and spillovers (Jones and Williams, 1998, 2000); we rely on the estimates
in Bloom et al. (2013) to pin down the magnitude of spillovers.
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The rest of the paper is organized as follows. Section 2 presents the dynamic model and
discusses its assumptions, providing also empirical justification for the focus on asymmetric in-
formation in innovation. Section 3 sets up and solves the full dynamic model; Section 4 discusses
the forces that shape the optimal policies. Section 5 estimates the model using firm data matched
to patent data and simulates the optimal policies. Section 6 considers the welfare loss from sim-
pler, restricted policies relative to the full optimum. Section 7 points to directions for future
research. The Online Appendix contains all proofs and a description of the computational pro-
cedure. A Supplementary Materials Appendix, attached to the working paper version (Akcigit
et al., 2017) contains a simpler 2-type, one-period version of the model and many sensitivity and
robustness checks for the estimation.

2 A Dynamic Model of R&D Investments

We present a dynamic model of R&D investments with spillovers that is tractable enough for the
theoretical study of the optimal mechanism with asymmetric information. As mentioned in the
introduction, first, such a model could lend itself to the study of other types of firm investments
with asymmetric information and spillovers. Second, with our core setup and methodology
in place, additional aspects of R&D investments by firms can be incorporated. Some of these
possible generalizations are discussed in Section 2.5, together with our modeling choices. Finally,
by turning off certain aspects such as spillovers and specifying a particular market structure
between final and intermediate good producers, our framework is also amenable to studying
firm taxation with heterogeneous firms more generally, even for non-innovating firms.

2.1 Setting

The core of the model are firms, producing and selling differentiated intermediate goods. They
engage in R&D to improve the quality of their differentiated products through innovation. There
are both observable and unobservable R&D inputs. More precisely, the quality qt at time t of the
intermediate good evolves according to:

qt = H(qt−1, λt) (1)

where λt is the endogenous quality improvement for period t, which we call the “step size:”

λt = λt(rt−1, lt, θt) (2)

The step size depends on three components:

(i) Observable R&D inputs: rt−1 denotes the resources that the firm spent on R&D in period
t− 1. They include the pay of scientists and researchers, lab equipment, material supplies, and
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raw materials for research and innovation. Their monetary cost is Mt(rt), with M′t(rt) > 0 and
M′′t (rt) ≥ 0.3 We will call these observable inputs “R&D investments.”

(ii) Unobservable R&D inputs: Each firm also needs to provide some unobservable R&D inputs,
which cannot be directly monitored by the government. One such input, among several possible
ones, would naturally be unobservable research effort, which is required in order to transform
the material resources into an innovation output. We will call these unobservable R&D inputs
“R&D effort” for concreteness, although they could include other costly, unobservable actions
taken at the organizational level and that contribute to research. They are denoted by lt and
entail a cost φt(lt) for the firm, which is increasing and convex.

(iii) Firm type: Every firm has a type θt that determines the efficiency with which it converts the
observable and unobservable inputs rt−1 and lt into innovation (product quality), called “research
productivity.” For instance, θ may represent the efficiency of management, an interpretation
bolstered by recent papers on the importance and heterogeneity of management practices across
firms (Bloom and Van Reenen (2007), Bloom, Sadun, and Van Reenen (2012), Bloom et al. (2013)).
The type can also be a composite measure of several exogenous characteristics of a firm that shape
its efficiency in producing innovations, such as the quality of its organization, of its business
model, or of its “ideas.” What is key is that firms differ in their ability to produce innovation and
that this ability is hard to observe by a government or regulator.

It is critical to bear in mind that for policy design purposes, it is equivalent whether a charac-
teristic (such as research productivity) is truly unobservable or whether it is simply impossible to
condition policies on it. In either case, the incentive compatibility constraints that will be at the
core of our mechanism design problem are needed. In addition, note that if innovation output
depends on such unobservable (or non-verifiable) characteristics such as research productivity,
it also means that there are some unobservable inputs. The latter prevent the government from
perfectly “inverting” the innovation outcome (conditional on observable inputs) to obtain the
productivity type. If all inputs were perfectly observable (e.g. the firm could not misreport
them) there would be no asymmetric information problem. In Section 2.4 we provide abundant
empirical evidence on the prevalence of asymmetric information in the innovation arena.

The type θt evolves over time according to a Markov process f t(θt|θt−1) on Θ = [θ, θ̄]. Denote
by θt the history of type realizations until time t, i.e., θt = {θ1, ..., θt} and by

P(θt) := f t(θt|θt−1)... f 1(θ1)

the probability of that history.

We assume that:
∂λ

∂θ
> 0

∂λ

∂r
> 0

∂λ

∂l
> 0

∂2λ

∂θ∂l
> 0

3Taking a broad view of these material inputs is consistent with the fact that many types of material inputs and
expenses are eligible for R&D tax credits or subsidies (Tyson and Linden, 2012).
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so that higher realizations of research productivity θ, higher R&D investments and higher effort
lead to a higher step size, and the marginal returns to effort are higher for higher types of firms
(the latter assumption will permit screening types).

Let us emphasize here the two related, but conceptually very distinct terms used: Firm’s
product quality refers to the product quality qt of the intermediate good produced by the firm.
Firm research productivity refers to the efficiency type of the firm, θt, that affects the innovation
process which produces the product quality qt.4

Note that because the step size depends on lagged R&D investments and on the stochastic
realization of θt, about which the firm has some, but not perfect, advance information at the
time the R&D investment decisions rt−1 are made, the returns to R&D are both stochastic and
heterogeneous across different types of firms. This captures the notion that a given spending on
R&D has uncertain returns and is not guaranteed to lead to a good innovation. The distinction in
the timing between R&D investments and effort has no technical implications and will not change
our results qualitatively or quantitatively.5 Conceptually, R&D investments can be thought of as
observable investments that – much like physical capital investments – take a while to yield
returns and are determined before the uncertainty is realized. R&D effort can be viewed as
inputs that can more easily be adjusted in response to the current state, i.e., utilization rate of the
equipment, managerial input, process improvements, labor effort of researchers, etc.

Input complementarity: We can characterize the complementarity between the three different
inputs that enter the step size using the Hicksian coefficient of complementarity (Hicks, 1970),
which will be important for the results. For any two variables (x, y) ∈ {θt, rt−1, lt} × {θt, rt−1, lt},
the Hicksian coefficient of complementarity between variables x and y in the step size creation is
denoted by:

ρxy =

∂2λ
∂x∂y λ

∂λ
∂x

∂λ
∂y

(3)

The higher coefficient ρxy is, the more inputs x and y are complementary in the production of the
step size. To give a few examples, suppose that the step size function takes the multiplicatively
separable form:

λt(rt−1, lt, θt) = h1
t (rt−1)h2

t (lt)h3
t (θt)

for some increasing functions h1
t , h2

t , and h3
t . Then, ρθl = ρθr = ρlr = 1. On the other hand, an

additively separable step size function

λt(rt−1, lt, θt) = h1
t (rt−1) + h2

t (lt) + h3
t (θt)

4To clarify a sometimes confusing point: once produced, innovations are non-rival and non-appropriable absent
IPR. The inputs into that innovation are, as usual, rival.

5If the timing was contemporaneous, the sums and expectations for the R&D wedge in Proposition 1 should simply
be lagged one period.
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would have ρθl = ρθr = ρlr = 0. Finally, a CES function of the form:

λt(rt−1, lt, θt) = (αrr
1−ρt
t−1 + αθθ

1−ρt
t + αl l

1−ρt
t )

1
1−ρt

has ρθl = ρθr = ρlr = ρt.

Figure 1: Model Summary

Household

Government

Final Goods producer Intermediate Goods producers

Yt =
∫
i Y (qt(i), kt(i))di

• Production

– Quality qt(i), quantity kt(i)

– Demand: p(kt(i), qt(i))

– Spillovers: aggregate quality: q̄t =
∫
i qt(i)di

– π(qt(i), q̄t) = max
k
{p(k, qt(i))k − C(k, q̄t)}

Intellectual
Property Policy

Max consumption

R&D & Tax Policies

Demand p(k(i), q(i))

1

Quality Spillovers: An important element of the model is the presence of spillovers between
firms. One firm’s innovation has a beneficial effect on the production costs of other firms. Such
spillovers can reflect the direct use of better technologies and processes in production and learn-
ing from new technologies to improve one’s production. Currently, the specific shape of the
knowledge spillovers in our model is taken from Akcigit and Kerr (2018) to capture the idea
of “building on the shoulders of giants” (Aghion and Howitt, 1992; Romer, 1990). Importantly,
however, the exact shape of the spillovers is not key for our theoretical results and the spillovers
could appear in different parts of the model, as discussed in more detail below.6 Aggregate

6In brief, all our formulas will be expressed at a general level as functions of net output and profits, which will
depend on own quality and aggregate quality. The channel could be through the cost (as here), directly through the
demand function (note that the equilibrium price always depends on aggregate quality), or through the innovation
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quality is given by:

q̄t =
∫

Θt
qt(θ

t)P(θt)dθt (4)

The production cost of each firm is decreasing in aggregate quality so that the cost of producing
k units of intermediate goods costs Ct(k, q̄t).

Final goods production: The final good is consumed by consumers and is produced competi-
tively using the intermediate goods as inputs. The production technology for the final good is:

Yt =
∫

Θt
Y(qt(θ

t), kt(θ
t))P(θt)d(θt) (5)

where Y(qt(θt), kt(θt)) is the contribution of the intermediate good of firm θt to the final good,
and depends on the quantity kt(θt) and the quality qt(θt) of the intermediate good of firm θt.
The price of the final good is normalized to one. The demand function for the intermediate good
that arises in the market will depend on the IPR regime, to which we turn next.

Patent Protection and Monopoly Power: In this setting, one way of capturing different IPR
regimes is through different demand functions p(qt(θt), kt(θt)). Our benchmark case mirrors
the current state of the world and grants the innovating firm full patent protection. Thus, the
intermediate good producer has monopoly power and faces a downward sloping demand curve
derived from the optimization problem of the final good producer, which is a function of the
quality and quantity, p(q, k) = ∂Y(q,k)

∂k .

Firm Life Cycle: Firms live for an infinite number of periods. We assume a small open economy
with gross interest rate R. Let θt|θ1 denote a history θt such that the period 1 type realization is
θ1 and let P(θt|θ1) be the probability of that history after initial realization θ1. In the laissez-faire
economy, the firm chooses quality qt(θt), quantity kt(θt), R&D investments rt(θt), and R&D effort
lt(θt) to maximize its objective given its initial type θ1, initial quality q0 and R&D investments r0:

∞

∑
t=1

(
1
R

)t−1 ∫

Θt

(
p(qt(θ

t), kt(θ
t))kt(θ

t)− C(kt(θ
t), q̄t)−Mt(rt(θ

t))− φt(lt(θ
t))
)

P(θt|θ1)d(θt|θ1) (6)

subject to the law of motion of quality qt(θt) = H(qt−1(θ
t−1), λt(lt(θt), rt−1(θ

t−1), θt)).

Production decision: Given the demand function p(q, k), let production profits gross of R&D
costs be:

π(qt(θ
t), q̄t) := max

k
{p(qt(θ

t), k)k− C(k, q̄t)}

Their maximization pins down the quantity produced for a given quality level. Figure 1 summa-
rizes the model in schematic form.

production function.
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2.2 Social Welfare

Consumer surplus is equal to the consumption of the final good, net of all transfers to firms. The
gross transfer to the firm of type θt in period t is the sum of its production costs (C(kt(θt), q̄t)),
R&D costs (Mt(rt(θt))), and a net transfer denoted by Tt(θt). The exact shape of this net transfer
will be specified depending on the market structure and information structure in each of the
cases considered below (in the laissez-faire, the gross transfer is just price times quantity and the
firm payoff is as in (6)). Consumer surplus in period t is thus: Y(kt(θt), qt(θt))− (C(kt(θt), q̄t) +

Mt(rt(θt)) + Tt(θt)). Let vt(θt) be the period t payoff (surplus) of a firm with history θt, equal to:

vt(θ
t) = Tt(θ

t)− φt(lt(θ
t)) (7)

Social welfare (the objective the planner maximizes) is a weighted sum of consumer surplus plus
firm surplus:7

∞

∑
t=1

(
1
R

)t−1 (∫

Θt

(
Y(kt(θ

t), qt(θ
t))− (C(kt(θ

t), q̄t) + Mt(rt(θ
t)) + Tt(θ

t)) + (1− χ)vt(θ
t)
)

P(θt)d(θt)

)
(8)

The key benchmark case in the contract theory literature has χ = 1 so that the social objective
becomes maximizing total social surplus (consumer plus firm surplus), minus all informational
rents, the so-called “virtual surplus.” Note also that, even absent any redistributive concerns,
maximizing efficiency essentially amounts to maximizing such a weighted sum of surpluses of
consumers and firms, if we assume, as is standard in the contract theory literature that the
planner can only raise the money for transfers through some distortionary method (e.g., excise
taxes or distortionary income taxes on households), so that the cost of one unit of transfer is
weakly greater than one (see Laffont and Tirole (1986)).

2.3 Two Market Failures and First Best Allocation

There are two market failures in this setting (in the absence of any government intervention): first,
the lack of appropriability of innovation means that there will be no investment in innovation
as long as producers’ profits are not protected by some IPR. Second, there are non-internalized
technology spillovers that affect others’ production technologies.

Suppose the planner could observe firm types and that transfers are perfectly non-distortionary
(χ = 0).8 Social welfare is then Wfirst-best, equal to total expected discounted output net of pro-
duction costs, R&D investment costs, and R&D effort costs:

Wfirst-best =
∞

∑
t=1

(
1
R

)t−1 (∫

Θt

(
Y(kt(θ

t), qt(θ
t))− C(kt(θ

t), q̄t)−Mt(rt(θ
t))− φt(lt(θ

t))
)

P(θt)d(θt)

)

7The final goods producer always has zero payoff because it operates under perfect competition.
8Under full information, type-specific lump-sum transfers and taxes are feasible.
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The first-best maximization program is:

max
{lt(θt),rt(θt),kt(θt)}t,θt

Wfirst-best s.t. qt(θ
t) = H(qt−1(θ

t−1), λt(lt(θ
t), rt−1(θ

t−1), θt))

with q0 and r0 given.

Conditional on a given quality qt(θt), the production choice of the planner is k∗(qt(θt), q̄t).
Denote by Y∗(qt(θt), q̄t) = Y(k∗t (qt(θt), q̄t), qt(θt)) the optimized consumption of the intermediate
good, and by Ỹ∗(qt(θt), q̄t) = Y∗(qt(θt), q̄t)− C(k∗(qt(θt), q̄t), q̄t) consumption net of production
costs for the intermediate good.

For the exposition, we simplify the accumulation equation of quality to be

qt = (1− δ)qt−1 + λt with 0 < δ < 1 (9)

where δ is the depreciation factor. None of the results depend on this simplification, but the
notation is much lightened.

The optimal choice of R&D investment and firm effort is then such that their total marginal
social benefit equals their marginal costs:

M′t(rt(θ
t)) =

1
R

E

(
∞

∑
s=t+1

(
1− δ

R

)s−t−1 (∂Ỹ∗(qs(θs), q̄s)

∂qs
+

∂Ỹ∗(qs(θs), q̄s)

∂q̄s

)
∂λt+1(θ

t+1)

∂rt(θt)

)

φ′t(lt(θ
t)) = E

(
∞

∑
s=t

(
1− δ

R

)s−t (∂Ỹ∗(qs(θs), q̄s)

∂qs
+

∂Ỹ∗(qs(θs), q̄s)

∂q̄s

))
∂λt(θt)

∂lt(θt)

where the expectation operator is over histories θt.

2.4 Asymmetric Information and Government Policies

Asymmetric Information Structure: The core asymmetry of information, which holds through-
out this paper, is that the history of research productivity realizations θt and the unobservable
R&D effort lt are private information of each firm. In the benchmark case, the government ob-
serves the full histories of R&D investment rt, quality improvements (the step size λt) and the
realized quality qt. To make this more concrete, think for instance of the government observing
past patents granted to each firm and their citations. Quantity k(θt) is unobservable as well,
or, equivalently, cannot be conditioned on by the government. This amounts to saying that the
government cannot intervene directly in the market between the intermediate and final good
producer and has to take as given their production decisions. In the Supplementary materials
S.2, we consider the case in which the government can intervene in that market because quantity
is observable.
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Government Policies Considered: We study several types of government policies. First, we take
a mechanism design approach and consider the optimal unrestricted direct revelation mechanism
which is subject only to the incentive compatibility constraints that arise due to asymmetric
information on firm type, R&D effort, and quantity produced. We relax the unobservability of
quantity in Section S.2. We do not constrain policy tools ex ante, but rather find the optimal
allocations subject to only incentive compatibility constraints and then show what tax functions
can implement these allocations (Section 4.2). We subsequently study the shape of and revenue
losses from restricted, parametric instruments, which are simpler (Section 6).

The Importance of Asymmetric Information: We now highlight why asymmetric information
is a critically important feature in the innovation process. We do this in two ways. First, we
summarize the abundant literature showing the prevalence of asymmetric information; second,
we show directly in our data that it is very difficult to predict a firm’s innovation quality based
on observables.

In our model, the productivity type of the firm, θ, embodies elements such as the quality of
the manager, of its organization, of its business model, or of its ideas. It is quite clear that these
elements are very hard to observe or, equivalently from the point of view of the government, to
condition policies on.9 A large literature indeed argues that asymmetric information is likely to
be a key issue in innovation. Hall and Lerner (2009) summarize several of these contributions. In
their language, asymmetric information refers to the fact that the innovator has “better informa-
tion about the likelihood of success” than anyone else, including investors and the government.
Based on the abundant literature on the asymmetric information between innovators and in-
vestors – that leads to financing frictions and inefficiencies– they argue that such informational
frictions are likely to carry over in an even more pronounced way to the interaction between
inventors and the government. They also caution against trying to reduce information asymme-
try by mandating fuller disclosure, which can be entirely unproductive in the innovation arena
because innovations can be easily imitated. Thus, revealing one’s productivity (quality of the
idea, management style, or organizational process) to the government runs the risk of revealing
it to one’s competitors, which will distort the quality of the signal provided.

The need for screening is very much embodied in the existence and size of the venture cap-
italist (VC) industry. Gompers (1995) and others have argued that VCs tend to operate in areas
where asymmetric information problems are more likely, such as high-technology and innovat-
ing sectors. Kaplan and Stromberg (2001) also document the intensive efforts that VCs put into
screening possible entrepreneurs in order to directly circumvent asymmetric information issues.
The severity of the asymmetric information problem is illustrated by the fact that, “even highly-
skilled VCs cannot distinguish in advance the next Google from the other cases” (Kerr et al.,
2014). Given that VCs face asymmetric information problems despite the huge time investment

9Recall that for policy design purposes, it is equivalent whether a variable is truly unobservable or simply impossi-
ble to condition policies on. In both cases, the incentive compatibility constraints at the core of our mechanism design
problem are needed.
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and detailed involvement in the innovating firms that they fund, it is hard to imagine that the
government would not be facing much larger informational problems when designing a decen-
tralized tax system that does not micro-manage or directly intervene in firms.

A strand of the literature has looked at responses of stock prices of R&D intensive firms as
another symptom of the asymmetric information problem inherent in innovation (Zantout, 1997;
Alam and Walton, 1995; Gharbi et al., 2014). Aboody and Lev (2000) show that insider gains
are larger at R&D intensive firms than firms without R&D because that is where asymmetric
information is higher.

Finally, the literature also highlights that not all R&D inputs are easily verifiable. Hall and
Van Reenen (2000) call this the “relabeling” problem and offer many examples of it. Mansfield
(1986) surveys the effects of R&D tax credits in the US, Canada, and Sweden and finds that
there is substantial misreporting. More recently, Chen et al. (2019) document that around 30% of
reported R&D investment by Chinese firms could be due to relabeling.

We can also directly provide some suggestive evidence for asymmetric information in our
data. To do so, we study what share of the innovation quality of a firm can actually be predicted
based on its past and current observables. The data and measurement are explained in more
detail in Section 5. In brief, we measure the quality of the innovations of a firm by its patent
citations, namely all forward citations that accrue to a firm’s patents until today (Hall et al., 2001).
We regress the citations-weighted patents of a firm on a whole range of controls, such as sector
and year fixed effects (or even the interaction between these two), lagged sales, employment,
R&D spending, age, balance sheet variables, etc. We then look at how well we can predict the
quality of the firm’s innovations. The result is that the prediction is quite poor. Even adding such
an exhaustive list of control variables – which already goes well beyond what a government could
conceivably condition a tax system on – the R-squared of these regressions barely moves above
0.3. In addition, it is especially difficult to predict performance based on data from the first few
years of a company’s life cycle (when there is only a short track record available) and very difficult
to predict which firms will become “superstars” i.e., receive highly-cited and influential patents.
Again, this set of information is likely a very generous upper bound on what the government
could realistically condition taxes on. Furthermore, if taxes actually depended on these variables,
firms would of course respond along these margins too (like they do along the profit and R&D
margins in this paper) so they are not tag-like signals that are immutable to taxation.10

2.5 Discussion of the Assumptions and Possible Generalizations

Additional Firm Heterogeneity: Firms may be heterogeneous along many dimensions, such as
their sector or the type of product. If the government or regulator wants to finetune the policy
for firms according to some observable vector of characteristics X, then the mechanism needs to

10These results are by no means a formal “test” of asymmetric information. It may be that the prediction could be
improved with different, better data or methods and it is always very difficult to disentangle heterogeneity (generating
asymmetric information) from uncertainty (which is consistent with symmetric information).
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condition on X. Since X is observable, this does not require adding any incentive constraints and
only increases the state space to be kept track of. We discuss heterogeneity in firms’ production
productivities explicitly in Section OA.3.

Entry and Exit: In principle, firms in our model only make intensive margin decisions about how
much to produce. Exit is captured only through the discount rate R that combines the interest
rate and an exogenously given exit or death rate. The discount rate could also depend on age.
Regarding entry, firms in the model enter jointly with their cohort. Free entry could affect the
size of a cohort and entry barriers could be studied as a policy tool in the model as well.11

The role of IPR: Our focus is not on IPR, but on the design of R&D policies. However, the latter’s
shape and magnitudes do depend on the IPR policies. Our starting point is to model the IPR
policy as it currently is in the world, namely granting patent protection and hence, full monopoly
rights to innovating firms.12 As a result, part of the role of R&D policies will be to correct partially
for the monopoly distortion induced by the patent system.13 We also consider two different cases
based on whether the government can intervene in the private market between intermediate and
final good producers, i.e., whether it can observe and make the optimal policy contingent on the
quantity k produced. Our benchmark case in the paper is when the government cannot control
quantity. The setting in which government can control quantity is covered in Supplementary
materials S.2. In this case, given that quality is observable, the government can incentivize the
socially optimal quantity to be produced and thus counteract the monopoly distortion.

Shape of the spillovers: The exact shape of the spillovers will not be important for the theoretical
results and will not affect the forces we describe and the key qualitative mechanisms. Following
Akcigit and Kerr (2018), we suppose spillovers affect the costs of production. This captures the
idea of “building on the shoulders of giants” in the innovation models. Innovations improve
the productivity of production labor and/or the process with which firms produce. Think for
instance of computers (an innovation from the point of view of one or several firms) that are then
being bought and used in other companies to produce better, cheaper, and faster. Alternatively,
one can think of other innovations in communication technologies, production technologies, or
health improvement, etc. However, our theoretical framework is general enough that spillovers
could appear in other parts. We could instead specify them as directly affecting the cost of
producing innovations: qt = H(qt−1, λt, q̄t). The formulas below are expressed in terms of general
profit functions or net output functions that depend in a reduced-form way on own quality and

11For instance, the government could endogenously set the lower bound of θ that would optimally be allowed to
enter.

12One may instead consider another system, such as patent for protection for x years or patent protection for a
fraction of the monopoly profits.

13If the world were different, and there was an IPR policy that did not grant monopoly power, e.g.: a prize system,
then the R&D policies would not be set to make up for the monopoly distortion. Whenever the product quality is
observable. the optimal IPR is very simple and amounts to paying the innovating intermediate good producer a prize
to buy the innovation, and then produce the socially optimal quantity. An equivalent system is to have full patent
protection, but pay a nonlinear price subsidy to the monopolist that aligns the private valuation of quantity with its
social valuation.
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aggregate quality. This is a quite general formulation that will apply for many specifications
of where the spillover applies and regardless of specific functional form assumptions. Another
possible variant would be to let lagged aggregate quality q̄t enter either the production cost
function or the innovation production function. This will merely cause a shift in the time indices
in the formulas, but not change anything substantial.

Different types of investments with different externalities: It is possible to consider different
types of firm investments, with different externalities (see Section OA.3).

3 A Dynamic Direct Revelation Mechanism with Spillovers

We now return to the general dynamic model from Section 2. Recall that the history θt and re-
search effort lt are private information of each firm. The government observes the step size λt, the
realized quality qt, and the R&D investment rt. To solve for the constrained efficient allocations,
we imagine that the government designs a direct revelation mechanism in which, every period,
each firm reports a type θ′t(θ

t) as a function of their history θt. Denote a reporting strategy by
σ = {θ′t(θt)}∞

t=1. A reporting strategy generates a history of reports θ′t(θt). The government then
assigns allocations of step sizes and R&D investments, denoted by x(θ′t) = {λ(θ′t), r(θ′t)}Θt and
a transfer Tt(θ′t) as functions of the history of reports. For simplicity, we normalize the starting
R&D investment for all agents to be r(θ0) = r0.14 Let lt(λt(θ′t(θt)), r(θ′t−1(θt−1), θt) denote the
R&D effort that would have to be provided for true type θt who reports θ′t (and, hence, had to
invest r(θ′t−1(θt−1) in the previous period and has to produce a step size of λt(θ′t(θt))). We can
make the following assumption for simplicity:

Assumption 1. (lt, rt) belongs to a convex and compact set.

Suppose that the vector of aggregate qualities {q̄t}∞
t=1 is given. The continuation value after

history θt under reporting strategy σ, denoted by Vσ(θt), given allocation rule is:

Vσ(θt) = Tt(θ
′t(θt))− φt(lt(λt(θ

′t(θt)), r(θ′t−1(θt−1), θt)) +
1
R

∫

Θ
Vσ(θt+1) f t+1(θt+1|θt)dθt+1

Vσ(θt) depends on the report-contingent allocations specified by the government, but this de-
pendence is implicit to lighten the notation. Let the continuation value under truthful reporting
be V(θt). Incentive compatibility requires that, after every history, and for all reporting strategies
σ:

V(θt) ≥ Vσ(θt) ∀σ, θt

14Since r0 is observable, if it were heterogeneous across firms, allocations would need to be specified as functions
of (θt, r0), which does not complicate the problem fundamentally, but makes the notation heavier.
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Under truth-telling, the continuation utility as of the first period in sequential form is:

V1({λ(θs), r(θs), Ts(θ
s)}∞

s=1 , θ1) =
∞

∑
t=1

(
1
R

)t−1

·
{∫

Θt

{
Tt(θ

t)− φt(lt(θ
t))}

}
P(θt|θ1)dθt

}

with lt(θ
t) := lt(λt(θ

t), rt−1(θ
t−1), θt) (10)

3.1 A first-order approach

We use a first-order approach, which replaces all the incentive constraints of agents by their
envelope conditions.15 If the agent’s report after history θt is optimally chosen, the envelope
theorem tells us that the change in continuation utility from a change in the type is only equal to
the direct effect of the type on utility (the indirect effect of the type on the allocation through the
report is zero by optimality of the report).

We now focus on a Markov process, although many of the results are generalizable to a
broader set of processes. Let I1,t(θ

t) be the impulse response function of the type realization in
period t to a shock in the type realization at time 1, defined as, for any Markov process:

I1,t(θ
t) =

t

∏
s=2


−

∂Fs(θs|θs−1)
∂θs−1

f s(θs|θs−1)


 (11)

The impulse response function captures the persistence of the stochastic type process. For in-
stance, for an autoregressive process where θt = p̃θt−1 + εt, the impulse response is simply
I1,t(θ

t) = p̃t−1. We now make two technical assumptions that will allow us to apply the first-
order approach, and which are directly adapted from Milgrom and Segal (2002).

Assumption 2. f s(θs|θs−1) > 0 ∀θs, θs−1 ∈ Θ.

This is the full support assumption that can be relaxed as in Farhi and Werning (2013) to allow
for moving support over time.

Assumption 3. ∂Fs(θs|θs−1)
∂θs−1

exists, is bounded, and ∂Fs(θs|θs−1)
∂θs−1

≤ 0.

Assumption 3 states that the distribution function is differentiable in θt−1, that its derivative is
bounded, and that a higher type realization in period s increases the realization of period’s s + 1
type in a first-order stochastic dominance sense. If it is satisfied, then Is,t(θt) is well-defined,
non-negative, and bounded. The assumption of boundedness could instead be replaced by the
assumption that Fs(θs|θs−1) is either convex or concave in θs−1 on Θ. All the examples we discuss,
such as an AR(1), log AR(1), iid, or a fully persistent process satisfy this assumption.

We can rewrite the per-period payoff of the firm from (7) as a function of the allocation of
transfer, step size, and past R&D spending and given its true type θt:

vt(Tt, λt, rt−1; θt) = Tt − φt(lt(λt, rt−1, θt)) (12)
15See Pavan et al. (2014), Farhi and Werning (2013), and Stantcheva (2017).
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Note that ∂vs
∂θs

= φ′(ls(θs)) ∂λ(ls(θs),rs−1(θ
s−1),θs)/∂θs

∂λ(lt(θs),rs−1(θs−1),θs)/∂ls
. Because of Assumption 1 and the continuity of φ′

and λ, this expression is bounded. The envelope condition in its derivative form is given by:

∂V(θt)

∂θt
= E

(
∞

∑
s=t

It,s(θ
s)

(
1
R

)s−t ∂vs(θs)

∂θs
| θt

)
(13)

Let V1(θ1) be the expected continuation utility as of period 1 for agents with initial type θ1. The
participation constraints are for all θ1:

V1(θ1) ≥ 0 (14)

The integral form of this envelope condition at history θt is:

V(θt−1, θt) =
∫ θt

θ

∂V(θt−1, m)

∂m
dm + V(θt−1, θ) (15)

This gives an expression for the informational rent forfeited to the agent at node θt to entice them
to report their true type.

3.2 Planner’s problem

The planner’s objective is to maximize social welfare in (8) subject to the incentive constraints in
(13) and participation constraints in (14). For simplicity only, we set χ = 1.16

Fix a given sequence of aggregate qualities, q̄ = {q̄1, ...q̄T}. The planner cannot directly
choose the quantity, so the intermediate good producer will choose its quantity k(qt(θt), q̄t) to
maximize profits p(qt(θt), k)k− C(k, q̄t). This yields consumption net of production costs equal
to Ỹ(qt(θt), q̄t) = Y(qt(θt), k(qt(θt), q̄t))− C(k(qt(θt), q̄t), q̄t).

The objective becomes:

W(q̄) = E

{
∞

∑
t=1

(
1
R

)t−1 {
Ỹ(qt(θ

t), q̄t)−Mt(r(θt))− Tt(θ
t)
}
}

Using the expression for V1(θ1) from (10), we can replace the sum of transfers Tt(θt) to obtain:

−E

(
∞

∑
t=1

(
1
R

)t−1

Tt(θ
t) | θ1

)
= −V1(θ1)−E

(
∞

∑
t=1

(
1
R

)t−1

φt(lt(θ
t)) | θ1

)

Under assumption 3, all that is needed to satisfy all participation constraints is to set V1(θ1) = 0.
Using the expression for the informational rent that needs to be forfeited to each agent from (15),
the expected discounted payoff to the planner is the “virtual surplus,” i.e., the total social surplus

16As explained, above, this is the typical case in the contract theory literature, which aims to maximize total social
surplus (efficiency) and minimize rents. Any χ < 1 will simply appear as a scaling factor in front of the “screening
term” in all formulas below.
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minus informational rents.

W(q̄) = E

{
∞

∑
t=1

(
1
R

)t−1{
Ỹ(qt(θ

t), q̄t)−Mt(r(θt))− φt(lt(θ
t))− 1− F1(θ1)

f 1(θ1)
I1,t

∂vt(θt)

∂θt

}}

The planner’s problem can be split into two steps. In the first step, called the “partial” problem,
the sequence of aggregate qualities q̄ = {q̄1, ...q̄T} is taken as given. The optimal allocations sub-
ject to resource and incentives constraints are solved for as functions of this conjectured sequence.
To ensure that the sum of aggregate qualities that arises is consistent with the conjectured q̄, a
consistency constraint needs to be imposed for every period t:

∫

Θt
qt(θ

t)P(θt)dθt = q̄t (16)

Let ηt be the multiplier on the consistency constraint in period t. The maximum of this problem
is denoted by P(q̄).

Partial problem: The program for a given sequence q̄ is to choose {λt(θt), lt(θt), rt(θt)}Θt so as to
solve:

P(q̄) = max W(q̄) s.t.:

∫

Θt
qt(θ

t)P(θt)dθt = q̄t and qt(θ
t) = qt−1(θ

t−1)(1− δ) + λ(lt(θ
t), rt−1(θ

t−1), θt) (17)

Using the expression for ∂vt
∂θt

, we have that:

W(q̄) =
∞

∑
t=1

(
1
R

)t−1

{
∫

Θt
{Ỹ(qt(θ

t), q̄t)−Mt(r(θt))− φt(lt(θ
t))−

1− F1(θ1)

f 1(θ1)
I1,t

[
φ′(lt(θ

t))
∂λ(lt(θt), rt−1(θ

t−1), θt)/∂θt

∂λ(lt(θt), rt−1(θt−1), θt)/∂lt

]
}P(θt)dθt}

Full problem: The full program consists in optimally choosing the sequence q̄, given the values
P(q̄) solved for in the first step.

P : max
q̄

P(q̄) (18)

Verifying global incentive constraints: Since the first-order approach is built on only necessary
(but not necessary and sufficient) conditions, we need to perform a numerical ex post verifica-
tion to check that the allocations found are indeed (globally) incentive compatible, i.e., that the
global incentive constraints are satisfied.17 This numerical verification procedure is described in
Appendix OA.2. For the range of parameters we study in Section 5, the allocations found using
the second-order approach do indeed satisfy the global incentive constraints.18 In addition, the

17See also Farhi and Werning (2013) and Stantcheva (2017).
18All code files will be made available to interested researchers.
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optimal allocations in such dynamic models with spillovers can not easily – at this level of gen-
erality – be shown to be unique. However, we can show uniqueness for the functional forms and
parameter values used in our simulations in Section 5.

3.3 Characterizing the Constrained Efficient Allocation Using Wedges

To characterize the constrained efficient allocations it is very helpful to define the so-called
wedges or implicit taxes and subsidies that apply at these allocations. The wedges measure
the distortions at the optimum relative to the laissez-faire economy with a patent system, i.e., the
hypothetical incentives expressed as implicit taxes or subsidies that would have to be provided
to firms starting from the laissez-faire in order to reach the allocation under consideration. The
R&D effort wedge τ(θt) measures the distortion on the firm’s R&D effort margin at history θt. It
is equal to the gap between the expected stream of marginal benefits from effort and its marginal
cost, where the expectation is conditional on the history θt. A positive wedge means that the
firm’s effort is distorted downwards. This wedge will interchangeably be called the corporate
tax or the profit wedge, since it will mimic a tax on firms’ profits, gross of R&D investments.
The R&D investment wedge, or R&D wedge for short, s(θt) is defined as the gap between the
marginal cost of R&D and the expected stream of benefits. It is akin to an implicit subsidy: a
positive R&D wedge will mean that, conditional on the effort, the firm is encouraged to invest
more in R&D than in the laissez-faire with patent protection.

Definition 1. The corporate wedge and the R&D wedge. The corporate (or profit) wedge is defined
as:

τ(θt) := E

(
∞

∑
s=t

(
1− δ

R

)s−t ∂πs(qs(θs), q̄s)

∂qs(θs)

∂λt(θt)

∂lt(θt)

)
− φ′(lt(θ

t)) (19)

The R&D spending (or R&D) wedge is defined as:

s(θt) := M′t(rt(θ
t))− 1

R
E

(
∞

∑
s=t+1

(
1− δ

R

)s−t−1 ∂πs(qs(θs), q̄s)

∂qs(θs)

∂λt+1(θ
t+1)

∂rt(θt)

)
(20)

To simplify the notation, we use the following definitions.

Πt(θ
t) :=

(
∞

∑
s=t

(
1− δ

R

)s−t ∂π(q(θs), q̄s)

∂qs(θs)

)

is the marginal impact on future expected profit flows from an increase in quality qt. Let

Qt(θ
t) =

(
∞

∑
s=t

(
1− δ

R

)s−t ∂Ỹ(qt(θs), q̄s)

∂qs(θs)

)
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be the marginal impact of quality on on future expected output net of production costs, Ỹ.

Q∗t (θ
t) :=

(
∞

∑
s=t

(
1− δ

R

)s−t ∂Ỹ∗(q(θs), q̄s)

∂qs(θs)

)

is the marginal impact on future expected output net of production costs from an increase in
quality qt, when quantity is set by the Planner to the socially optimal level.19

4 Optimal Policies

In this section, we characterize the optimal constrained efficient allocations that are the solutions
to the planning problem in Section 3. We then show how these allocations can be implemented
with a parsimonious tax function.

4.1 Optimal Corporate and R&D Wedges

Denote by εxy,t the elasticity of variable x to variable y at time t, i.e.,:

εxy,t :=
∂xt

∂yt

yt

xt

For instance, ε l(1−τ),t is the elasticity of R&D effort to the net-of-tax rate 1− τ. Taking the first-
order conditions of program P(q̄), and rearranging yields the optimal wedge formulas at given q̄
in parts (i) and (ii) in the next proposition. Solving the full program yields an expression for the
multipliers on the consistency constraints in part (iii), and hence a solution for q̄t.

Proposition 1. Optimal corporate wedge and R&D wedge.

(i) The optimal profit wedge satisfies:

τ(θt) = −E

(
∞

∑
s=t

(
1− δ

R

)s−t

ηs

)
∂λt

∂lt
︸ ︷︷ ︸

Pigouvian
correction

−E(Qt(θ
t)−Πt(θ

t))
∂λt

∂lt︸ ︷︷ ︸
Monopoly quality

valuation correction

+

Screening and incentive term︷ ︸︸ ︷
1− F1(θ1)

f 1(θ1)
I1,t(θ

t)

︸ ︷︷ ︸
Type distribution
and persistence

φ′tλθt

λt

[
1

ε l,1−τ

1
ελl,t

+ ρθl,t

]

︸ ︷︷ ︸
Elasticity

(21)

19Note that since the quantity maximizes consumption net of production costs per producer, i.e., reaches
Ỹ∗(q(θs), q̄s), the derivative is just the direct impact of quality (the indirect effect through a change in the quantity is
zero).
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(ii) The optimal R&D subsidy is given by:

s(θt) = E

(
∞

∑
s=t+1

(
1− δ

R

)s−t−1

ηs
∂λ(θt+1)

∂rt

)

︸ ︷︷ ︸
Pigouvian
cocrrection

+E

((
Qt+1(θ

t+1)−Πt+1(θ
t+1)

) ∂λ(θt+1)

∂rt

)

︸ ︷︷ ︸
Monopoly quality

valuation correction

(22)

+

Screening and incentive term︷ ︸︸ ︷

1
R

E




1− F1(θ1)

f 1(θ1)
I1,t+1(θ

t+1)

︸ ︷︷ ︸
Type distribution
and persistence

φ′t+1(l(θ
t+1))

λθλr

λλl
(ρlr − ρθr)︸ ︷︷ ︸

Relative
complementarity




(iii) The multipliers ηt capturing the spillovers between firms are given by:

∫

Θt

∂Ỹ∗(qt(θt), q̄t)

∂q̄t
P(θt)dθt = ηt (23)

Proof. See Appendix OA.1.

The optimal wedges in (21) and (22) are determined by the trade-off between maximizing
allocative efficiency and minimizing informational rents. They balance three main effects.

1) Monopoly quality valuation correction. The intermediate good monopolist takes into account
the effect of a quality increase on profits, while the planner values the effect on household con-
sumption. Recall that the wedge is defined as the implicit subsidy (or implicit tax) starting from
the laissez-faire allocation with patent protection. To induce the monopolist to invest more in
quality than they would if they were maximizing profits, this term decreases the profit wedge
and increases the R&D wedge. When quantity is chosen by the intermediate goods producer in
the private market to maximize profits and not social surplus, the effect of a change in quantity
(induced by extra R&D investment or R&D effort) on social welfare (implicit in Qt(θt)) is first-
order and is proportional to the monopoly distortion, i.e., the gap between price and marginal
cost, cumulated over all future periods.20 This monopoly quantity correction term is positive
and always makes the profit wedge smaller and R&D subsidy larger relative to a case where
there is no difference between social and private valuation (i.e., no monopoly distortion and the
producer perfectly internalizes social value on the production side). This is intuitive: the higher
the gap in between the monopolist’s and the social value, the less the monopolist internalizes the
social benefit from an increase in quality, and the more they need to be incentivized to invest in

20Formally, ∂Ỹ(qt(θt),q̄t)
∂q =

∂Y(qt(θt),kt(qt(θt),q̄t))
∂qt(θt)

+
(

p(qt(θ
t), kt(qt(θ

t), q̄t))− ∂C(kt(qt(θt),q̄t),q̄t)
∂k

)
∂kt(qt(θt),q̄t)

∂qt(θt)
where

kt(qt(θ
t), q̄t) is the quantity chosen to maximize profits by a monopolist with quality qt(θ

t). This derivative also
appears in the Pigouvian correction term: when aggregate quality increases, quantity produced increases, which has
a first-order positive effect on social welfare.
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innovation.
Let’s think of two polar cases. If there is no IPR at all in the laissez-faire economy, profits

are zero and a large subsidy is needed to incentivize innovation. If, on the other hand, the
laissez-faire features a prize system in which the company is entirely paid for the social value
it generates, the monopoly distortion is zero and a smaller subsidy is needed to incentivize the
investment in innovation. In between these polar cases, if profits are a share απ of total net social
value, the remaining gap in value that needs to be incentivized is E

(
(1− απ)Qt+1(θ

t+1)
)
; απ can

capture in a reduced-form way the strength of share of total value granted to innovating firms
by the IPR system. The closer the company is to capturing the full social surplus and the less
additional incentive provision is needed.

2) Pigouvian correction for the technology spillover. As long as the technological spillover is
positive, the Pigouvian correction term unambiguously pushes towards increasing firms’ R&D
effort and investment relative to the laissez-faire. The Pigouvian correction for R&D effort in (21)
is increasing in the effect of effort on the step size ( ∂λt

∂lt ). The correction for R&D spending in (22)
is increasing in the expected effect of R&D investments on the next period’s step size ∂λt+1

∂rt
.

While the monopoly distortion captures the lack of alignment in the valuation of quantity
produced, the Pigouvian correction captures the lack of alignment on how much quality pro-
duced is valued socially and privately. Even if there is no monopoly power at all, this distortion
applies.

3) Screening and incentives. Screening considerations may push in the opposite direction from
the just described monopoly and Pigouvian corrections. The screening term arises because of
the asymmetric information. Without asymmetric information, this term would be zero and
the optimal profit wedge and the optimal R&D subsidy would be equal to the Pigouvian and
monopoly quality valuation corrections, as in Section 2.3. Externalities would be corrected under
full information (and tailored to each research productivity history θt), and there would be no
informational rents. With asymmetric information, on the contrary, there are three effects at play.

The stochastic process for firm type. The initial type distribution times the persistence in types (cap-
tured by the impulse response function I1,t) increases the magnitude of the profit wedge and
the R&D investment wedge. More persistent types effectively confer more private information
to firms and, hence, higher potential informational rents. To reduce these informational rents,
allocations have to be distorted more (the typical trade-off between informational rents and effi-
ciency). If shocks were iid, we would have I1,t = 0 for all t > 1, and, hence, the optimal corporate
and R&D wedges would be equal to only the Pigouvian correction term plus the monopoly val-
uation correction term for all t > 1. With AR(1) shocks with persistence parameter p̃, I1,t = p̃t−1

so that the impulse response is fully determined by the persistence parameter. If types are fully
persistent, so that there is only heterogeneity, but no uncertainty, the impulse response I1,t = 1
for all t and the screening term does not decay over time.

The higher the inverse hazard ratio 1−F1(θ1)
f 1(θ1)θ1

and the larger the mass of firms with research
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productivity larger than θ1 relative to the mass of firms with type θ1 ( f 1(θ1)). This makes the cost
of inducing a marginal distortion in effort or R&D investments at point θ1 small relative to the
benefit of saving on the informational rent over a mass of 1− F1(θ1) of all firms more productive
than θ1.

The efficiency cost of distorting R&D effort. A higher efficiency cost decreases the optimal effort
wedge.21 The efficiency cost can be decomposed in allocative inefficiency and information rents.
The allocative inefficiency induced by the effort wedge is increasing in the elasticity of the step
size to effort (ε l,1−τ,tελl,t). The informational rent inefficiency increases in the complementarity
of effort to firm research productivity ρθl,t. Recall from the simple illustration in Section S.1
that the effort wedge on the low research productivity firm was higher when the high research
productivity firm was able to mimic its step size production at a much lower effort cost. This
is the effect embodied in ρθl . A high complementarity between effort and firm type means
that it is easy for higher research productivity firms to mimic lower productivity ones, which
increases their potential informational rent and thus leads to an optimally higher distortion in
the allocation to reduce those rents. Since the disutility of R&D effort is indexed by t, the strength
of this incentive effect could be varying over the life cycle of a firm.

The complementarity between R&D, firm effort, and firm type. Recall from Section S.1 that for the
purposes of screening, the (observable) R&D investments are distorted only in so far as they can
indirectly affect the unobservable R&D effort choice, i.e., can affect the incentive constraint of the
high research productivity firm.

How effective R&D investment subsidies are to stimulate unobserved effort depends on the
relative complementarity of R&D expenses with effort and type, (ρlr − ρθr), which determines
the sign of the screening term. Higher R&D expenses lead to more effort by the firm as long as
they increase the marginal return to effort, i.e., as long as ∂2λ(l,r,θ)

∂r∂l > 0 and thus ρlr > 0, as seems
likely. On the other hand, if ρθr > 0, then higher R&D expenses have a higher marginal effect
on the step sizes of high research productivity firms (at any given effort level), which makes
it easier for them to mimic the step sizes allocated to lower productivity firms. This, in turn,
increases the informational rent that needs to be forfeited to these firms to induce them to reveal
their true type. What matters is whether, on balance, the net effect of increasing R&D is positive,
i.e., whether the effect on effort will outweigh the effect on the step size conditional on effort. If
yes, then R&D expenses will relax the firms’ incentive constraints and reduce their informational
rents. This occurs if (ρlr − ρθr) > 0, i.e., if R&D expenses are more complementary to effort than
they are to firm type.

If the complementarity of R&D with both R&D effort and firm type is the same (ρlr = ρθr),
then the screening term of the optimal R&D subsidy is zero. In this special case, an increase in
R&D has exactly offsetting effects on effort and on the step size conditional on effort, leaving
the informational rents unchanged on balance (i.e., the incentive constraints are unaffected by

21This is naturally reminiscent of the inverse elasticity rule in Ramsey taxation.
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changes in R&D investments).

Another way of interpreting ρθr is as the riskiness of R&D, or as its exposure to the intrinsic
risk of the firm. The higher this complementarity, and the more R&D returns are subject to the
stochastic realizations of firm type. Hence, the sign of (ρlr − ρθr) measures the strength of R&D
contribution to firm effort, filtered out of the exposure to firm risk.

In general, there is no reason to think that the Hicksian coefficients of complementarity are
constant. It could vary with the level of effort, R&D, and ability, as well as with firm age.22

Hence, the optimal R&D wedge may change sign over the distribution of types or over the life
cycle of a firm.

4.1.1 Cross-sectional profile of optimal policies

Given the level of generality at which we have derived the wedges, there are many possible
patterns by firm productivity. But we can discuss, term-by-term, what forces would drive these
cross-sectional patterns.

When thinking of the latter, it is important to bear in mind that a higher R&D wedge does
not mean a higher investment in R&D and a lower effort wedge does not mean more R&D
effort. It merely means a higher incentive relative to the laissez-faire. This is because firms have
heterogeneous benefits and costs from investments and effort in the laissez-faire, so that the same
level of incentive will not translate into the same level of inputs across firms. For instance, in the
laissez-faire, low research productivity firms invest much less than high research productivity
firms and this pattern is not overturned despite the incentive provision.

The screening term will in general tend to be larger in absolute value for lower productivity
firms, by the logic of screening models: because higher productivity firms want to pretend to
be lower types, the latter’s allocations will be distorted to prevent such deviations while also
minimizing informational rents. For the profit wedge, the screening term is positive, which
means that higher type firms will face a lower profit wedge. For the R&D wedge, the screening
term’s sign depends on ρrl − ρθr. When ρθr > ρrl , the screening term is negative. R&D invest-
ments benefit disproportionately high productivity firms. It is then better to not incentivize R&D
investments as much for the lower productivity firms, since this makes their allocations more
attractive to high productivity firms. In sum, since in this case lower productivity firms have no
comparative advantage at innovation, they should not be incentivized as much to invest in R&D,
so that high productivity firms can be incentivized better.

Regarding the Pigouvian correction term, higher research productivity firms have a higher
positive spillover on other firms as long as ρlr > 0 and ρθl > 0, in which case their marginal
investment in R&D or a higher effort has a higher marginal impact on their step size, and hence
on aggregate quality. The optimal Pigouvian correction would then be increasing in firm type

22Recall that, although we have dropped this notation for clarity, all elasticities, coefficients of complementarities,
and functions are evaluated at θt, so they can depend on investment size and on age t.
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and warrant a higher profit subsidy, all else equal, on higher productivity firms. The compara-
tive statics of the monopoly valuation correction term are ambiguous. If private valuation is a
constant share of total social valuation, then monopoly valuation term would be increasing in
firm type as well.

In addition, as high productivity firms invest more in R&D and generate larger profits, the
statements just made about wedges will be the same if expressed in terms of observables, namely
profits and R&D investments.

4.1.2 Age profile of optimal policies

The optimal policies will generically change over firms’ life cycles. Age patterns can in principle
come from two sources, which are conceptually very different.

The first reason is that the state-contingent policy is set at age 1 under full commitment
from the planner. As a result, it is the distance to that initial period that induces age patterns.
The screening term in the optimal corporate and R&D wedges declines in absolute value with
age, as long as the impulse response is below 1 (as is the case for instance with a first-order
autoregressive or geometric autoregressive process with persistence parameter p̃ < 1). This
decay towards zero is faster the lower the persistence in types. From the perspective of period
1, as types are stochastic, the informational rent to be received after any particular history θt a
longer time span away is worth less to the agent and is less costly to the planner. The smaller
effective informational rents warrant less distortion in the allocations.

Hence, over the life cycle of a firm, the wedges converge to the Pigouvian and monopoly cor-
rection terms. Whether they converge from above or below depends on the sign of the screening
term, which as explained depends on the relative Hicksian complementarities of R&D invest-
ments to R&D effort versus unobserved productivity. If ρθr > ρlr, the screening term is negative
and optimal wedges converge from below to the Pigouvian and monopoly correction terms. They
converge from above if ρθr < ρlr.

The second reason is that there may be direct age effects if the technological fundamentals,
such as the step size λt, the cost of effort φt(l), the distribution of types, and the cost of R&D
Mt(rt) vary with age. One may imagine that as a firm gains expertise, the cost of unobserv-
able and observable R&D inputs may decrease (hence, φt and Mt would be decreasing with t).
More empirical work could shed light on the lifecycle patterns of the production and innovation
technologies.

The age patterns of optimal policies are thus theoretically ambiguous and will depend on the
parameters of the model. The quantitative analysis in Section 5 will shed light on them.
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4.2 Implementation through Taxes and Subsidies

In this section, we show that the optimal allocations can be implemented with a relatively parsi-
monious tax function.23 In general, the optimal policies depend on the histories of R&D inputs
and outputs in a nonlinear and non-separable way. However, there exists a simpler implemen-
tation of the optimal mechanism, which does not need to depend on histories longer than two
periods. This makes our implementation very different from dynamic income tax models for
agents as in Farhi and Werning (2013) or Stantcheva (2017), where it is in general impossible to
cut the history-dependence of optimal policies except in special cases such as iid shocks Albanesi
and Sleet (2006).

Market Structure. The constrained efficient allocations solved for in Section 3 are independent
of the underlying market structure as long as the information set and toolbox of the planner
is as specified there.24 However, the shape and level of the tax function that implements the
constrained efficient allocation depends on the market structure. For instance, the more credit
constrained firms are in the laissez-faire decentralized market, the more generous transfers they
would have to receive early on so as to be able to invest the amount required in the constrained
efficient allocation. The implementation also depends on the IPR policy in place, since the latter
determines the level of profits in the laissez-faire. Finally, the same optimal allocations can often
be implemented with multiple different policies and, hence, the implementation is not unique.

We assume that in the laissez-faire market firms can borrow freely at a constant rate R, and
that they take the price of the final good (normalized to 1) as given. They face the demand func-
tion for their differentiated intermediate goods under a patent system that grants full monopoly
power, as presented in Section 2.

Implementation Result. The tax implementation function can be relatively parsimonious when
the impulse response functions I1,t(θ

t) are independent of the history of types, except through θ1

and θt for all t, as would be the case for any AR(1) process, or a geometric random walk (or, for
any monotonic transformation of an AR(1) process).

The constrained efficient allocation from program P(q̄) is implemented with a comprehensive,
age-dependent tax function that conditions on current quality qt, lagged quality, qt−1, current
R&D, rt, lagged R&D rt−1, and first-period quality q1, i.e, Tt(qt, rt, qt−1, rt−1, q1). The proof is in

23Until now, we have considered a direct revelation mechanism, in which firms report their type to the planner every
period and the planner assigns allocations as a function of the history of reports received. We would now like to step
away from reporting of types and move into the realm of policy implementation. The question of implementation is
whether there is some general tax and transfer function T(q∞, r∞) that depends on the full sequence of all observables,
i.e., on the history of quality q∞ (or, interchangeably, step size λ∞) and R&D investment r∞, such that, if this tax and
transfer rule is in place, optimizing firms will pick allocations equal to the constrained efficient allocation from the
direct revelation mechanism.

24For instance, if firms are credit constrained, the planner will simply increase the transfer in a lump-sum fashion
in earlier periods and make up for it with lower transfers in later periods without affecting the incentive constraints.
However, if the information set of the planner is altered, e.g., if firms could save in a hidden way, then the constrained
efficient allocation would be different.
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the Appendix. Note that because profits are an immediate function of quality qt, the tax function
could instead be written as a function of profits, i.e.,: T̃t(πt, rt, πt−1, rt−1, π1).

It may at first glance seem as if this result were trivial: if productivity follows a Markov
process, it appears to make sense that one only needs to condition on allocations one period back
in addition to the current ones. However, this intuition is not correct. Even with Markov shocks,
most dynamic tax problems (Farhi and Werning, 2013; Stantcheva, 2017) require that the full past
histories are conditioned on. What is different here is that the past stock of quality can serve as a
sufficient statistic for the past investments, in the sense that it fully determines the future benefit
from more innovation investments (together with rt and rt−1).

The link between the wedges and the tax function is as follows, where the arguments of the
tax function are evaluated at their optimal values for history θt.

s(θt) = − 1
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Generically, the optimal wedges in Proposition 1 depend nonlinearly and non-separably on
the choice variables. Few general statements can be made without specifying the underlying
functional forms. However, it is clear from the optimal wedge formulas that the degree of non-
linearity of the profit tax and R&D subsidy depend crucially on the shape of the step size func-
tion. In particular, profit taxes will be far from linear if the marginal effect of R&D effort is very
nonlinear. If the step size is close to linear in R&D effort, on the contrary, then profit taxes will
also be closer to linear. The same applies to the R&D wedge with respect to the marginal effect of
R&D investment on the step size. Similarly, nonseparabilities in the tax function between profits
and R&D investment will be quantitatively important if the step size features strong complemen-
tarities between R&D effort and investment.

In Appendix OA.2, we work out a very simple functional form example that generates con-
stant marginal profit taxes and constant R&D subsidies, i.e., implementation policies that are
linear and separable. The latter only depend on the degree of market power (β) and the strength
of the spillover (ζ).25

5 Quantitative Investigation

In this section and next, we provide empirical content to the theoretical model, by estimating
it and numerically illustrating the optimal policies. The questions addressed are what are the

25Estimating the model in the real data, we will show quantitatively below that separable, nonlinear profit taxes and
R&D subsidies is sufficient to capture most of the gains from the full mechanism. In fact, a linear profit tax coupled
with a nonlinear R&D subsidy does almost equally well.
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estimated values of the key parameters such as the complementarity between R&D and firm
research productivity ρθr, the persistence p̃, and the externality strength ζ in the data? What are
the age and cross-sectional patterns of optimal policies and allocations? What are the quantitative
losses from simpler policies relative to the fully optimal mechanism?

5.1 Data and Summary Statistics

The theory developed in this paper can be applied to different datasets and the model could
of course be estimated for different countries, industries, or types of firms to yield different
quantitative answers to the questions above and inform the specific optimal policies for each
setting or sample under consideration. The benchmark data we chose is the Census Bureau’s
Longitudinal Business Database and Census of Manufacturers, matched to the U.S. Patent and
Trademark Office (USPTO) patent data from the NBER database (as described in detail in Hall
et al. (2001)), containing over three million patents with their forward citations. This data match
is done and used by Acemoglu et al. (2018) and Akcigit and Kerr (2018). We take several existing
data moments as our targets directly from those papers and compute the new ones directly. To
build confidence in our model and estimation, we also match several non-targeted moments in
Table 4.

An alternative dataset is the firm-level accounting data from COMPUSTAT data matched to
the NBER patent database. As argued in Bloom, Schankerman, and Van Reenen (2013), and
one of the reasons, this data has been widely used, is that these firms represent a large fraction
of the innovation in the U.S. For completeness, we provide the numerical results based on the
COMPUSTAT sample in the Supplementary materials S.3.

Map between the model and the data: One advantage of the patent data matched to firm-level
data is that there is a natural map between the variables in the model and the data. R&D spending
M(r) can directly be measured as reported R&D expenses in the accounting data. The step size
λt, i.e., the flow of new quality of a firm in year t, can be measured by the forward citations
received on all innovations patented in year t. The quality qt is the depreciation-adjusted stock of
citations per patent to date qt = (1− δ)qt−1 + λt. Profits and sales can also directly be measured.

5.2 Estimation

We first parameterize the model as summarized in Table 1. Some of the parameters are calibrated
exogenously, following the earlier innovation literature. This reduces the size of the parameter
vector to be estimated. These parameters are reported in the upper panel of Table 2. In Section
5.5 we provide sensitivity analyses on each of them. The lower panel of that table reports the key
and specific parameters of our model, which are estimated to best match important moments in
the data presented in Table 3. In Table 4, we check that the estimation matches well non-targeted
moments to assess the fit. We describe our estimation procedure in more detail now.
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The status quo economy: To be able to consistently estimate the parameters of the model by
matching moments in the data, we need to subject firms in our model to the same policies
(R&D subsidy and corporate tax) as in the U.S. We call status quo economy the economy with the
primitives just presented, but in which policies are not optimally set, but rather set to mimic their
levels in the U.S. We approximate real-world R&D subsidies with a linear R&D subsidy rate. We
estimate the effective subsidy rate on R&D investments by firms using the total spending of the
government on firm R&D through all programs (R&D tax credits, direct grants, etc.) divided
by total private business spending on R&D. The details for this computation are in the Online
Appendix. We similarly estimate the effective average corporate tax rate. We find an average
effective subsidy rate of 19% and an average effective corporate tax rate of 23%. Reassuringly,
the estimation of the parameters is not very sensitive to the choice of these effective rates within
reasonable ranges.

Functional Forms: The cost function depends on aggregate quality q̄t, and the strength of the
externality is measured by ζ. The step size is multiplicatively separable in R&D effort lt and
takes a constant elasticity of substitution (CES) form in type θt and R&D investment rt−1. In this
case, ρθl = ρlr = 1. This functional form is specified for tractability; given the data, it would
be very difficult to also discipline empirically ρlr. Given that the sign of ρlr − ρθr determines
the sign of the screening term in the optimal R&D subsidy (as shown in Proposition 1), the key
question for whether screening will lead to a higher or lower subsidy on R&D will be whether
in the data ρθr ≥ 1 or ρθr < 1. The costs of R&D effort and R&D investments are iso-elastic.
Finally, the stochastic process for firm research productivity type is a geometric random walk,
with persistence p̃ (additional shock processes are in the Supplementary materials). The shock εt

follows a normal distribution with mean zero and variance σε.

Externally Calibrated Parameters: We take the externally calibrated parameters from reputable
papers in the innovation and growth literatures, but we are also careful to provide a lot of
sensitivity analysis on their values in Section 5.5.

The profit parameter β is set to 0.15 as in Guner et al. (2008). The exponent on the R&D
cost function, η, is set as in Akcigit and Kerr (2018). The depreciation parameter δ is a standard
feature of empirical innovation work, as described in detail in Hall et al. (2005), where the value
of 10% is also taken from. This depreciation reflects the idea that, from the point of view of
each individual innovation-producing firm, knowledge can become obsolete unless it is updated,
which carries a cost. The long-run discount rate R reflects the interest rate plus the probability
of exit (or death). The average level of research productivity is normalized to µθ = 0, while the
initial R&D stock is set to r0 = 1.

Moments and Identification: Table 3 lists the data moments that we match. The second column
provides the value of the moment in the simulations, the third column gives the target value of
each moment in the data, and the fourth column shows the standard error. In this section, we
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Table 1: Functional forms

Function Notation Functional form

Consumer valuation Y(qt, kt)
1

1−β qβ
t k1−β

t

Cost function Ct(k, q̄t)
k
q̄ζ

t

Quality accumulation H(qt−1, λt) qt = (1− δ)qt−1 + λt

Step size λt(rt−1, lt, θt) (αr1−ρθr
t−1 + (1− α)θ

1−ρθr
t )

1
1−ρθr lt

Disutility of effort φt(lt) κl
l1+γ
t

1+γ

Cost of R&D Mt(rt) κr
r1+η

t
1+η

Stochastic type process f t(θt|θt−1) log θt = p̃ log θt−1 + (1− p̃)µθ + εt

Distribution of heterogeneity θ1 f 1(θ1) f 1(θ1) =
IΘ1 (θ1)

θ1[θ1−θ̄1]

Initial quality level q0 0

Notes: IΘ1 (θ1) denotes the indicator function equal to 1 if θ1 is in the set Θ1 = [θ1, θ̄1].

discuss the identification of the parameters of the model.

Let the vector of the nine endogenously estimated parameters be denoted by

χ = (α, ρθr, σε, p, κl , κr, γ, ζ, Θ1)

In our benchmark estimation, we chose the parameters so as to minimize the loss function:

L(χ) =
9

∑
k=1

(
momentmodel

k (χ)−momentdata
k

momentdata
k

)2

where momentmodel
k is the value of moment k in the model and momentdata

k is the value of the
moment in the data. In the Supplementary materials, we provide the results using a two-step
GMM-type weighting.

Since we are minimizing the weighted distance between the theoretical and empirical mo-
ments, all parameters are identified jointly. Nevertheless, given the dynamics in our model, we
can provide a heuristic discussion of identification.

Elasticity of Patent Quality wrt. R&D, M1: The first moment is the elasticity of patent quality
with respect to R&D spending, where patent quality is measured as citations per patent. This mo-
ment measures how effective R&D spending is in generating successful innovations. It has been
estimated widely in the literature since Griliches (1998). Not surprisingly, this moment informs
the complementarity (or elasticity of substitution) parameter ρθr in the innovation production
function.

R&D Intensity, M2: The second moment is the mean ratio of R&D spending to firm sales,
which is a measure of the R&D intensity of a firm. It is computed by Acemoglu et al. (2018) and
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Table 2: Parameter values

Parameter Symbol Value Standard Error

External Calibration
Interest rate R 1.05
Intangibles depreciation δ 0.1
Knowledge share β 0.15
R&D cost elasticity η 1.5
Level of types µθ 0.00
Initial R&D stock r0 1.0
Program horizon T 30

Internal Calibration
R&D share α 0.483 (0.025)
R&D-type substitution ρθr 1.88 (0.126)
Type variance σε 0.320 (0.014)
Type persistence p̃ 0.63 (0.022)
Scale of disutility κl 0.69 (0.050)
Scale of R&D cost κr 0.055 (0.003)
Effort cost elasticity γ 0.86 (0.052)
Support width for θ1 Θ1 1.91 (0.097)
Production externality ζ 0.018 (0.001)

Table 3: Moments

Moment Target Simulation Standard Error

M1. Patent quality-R&D elasticity 0.88 0.97 (0.0009)
M2. R&D/Sales mean 0.041 0.035 (0.0025)
M3. Sales growth (DHS) mean 0.06 0.07 (0.005)
M4. Within-firm patent quality coeff of var 0.63 0.76 (0.0017)
Across-firm patent quality coeff of var:

M5. Young firms 1.06 1.05 (0.0012)
M6. Older firms 0.99 0.81 (0.0016)

M7. Patent quality young/old 1.04 1.08 (0.0048)
M8. Spillover coefficient 0.191 0.192 (0.046)
M9. Elasticity of R&D investment to cost - 0.35 -0.35 (0.101)

is consistent with other papers too. The R&D share in the step size, α, affects the marginal return
to R&D investment rt and therefore has a direct impact on firms’ R&D/Sales ratio.

Sales Growth, M3: The third moment we include is firms’ sales growth. Firm growth is
determined by R&D investments. These are in turn driven by the firms’ first order condition that
sets the marginal return from R&D investment equal to its marginal cost. Therefore, the scale
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parameter of the cost function, κr has a first-order impact on the average growth rate of the firm.

Within-firm Patent Quality Variation, M4: The fourth to sixth moments are specific to our
model, which highlighted the role of firm heterogeneity and the role of uncertainty over time.
Moment four hence considers the variation in a firm’s quality (again, as measured by its citations
per patent) over time. This within-firm measure helps assess the uncertainty facing a firm, which
is captured by the persistence parameter p̃ in our model.

Across-firm Patent Quality Variation by Age, M5-M6: The fifth and sixth moments capture the
variation in quality across firms. This cross-sectional variability measure gauges the degree of
heterogeneity across firms and is computed separately for young and old firms. “Young” firms
are defined – both in the data and in the model– as those of age 0-5. “Old” firms are older
than 5 years (we tried alternative definitions of young and old, with cutoffs at 3 or 10 years,
with extremely similar results). As is intuitive, these moments are mainly determined by the
dispersion σε and the width of the support of the type distribution Θ1.

Patent Quality Ratio (young/old), M7: The seventh moment is the ratio of patent quality between
young and old firms and measures the decline in invention quality that occurs with firm age.

Spillover Coefficient, M8: One of the key moments, moment 8, targets the estimate of technolog-
ical spillovers in Bloom, Schankerman, and Van Reenen (2013). These authors estimate spillovers
by regressing the sales of a firm on the R&D of other firms in the economy, weighted by the
extent of technological proximity with these other firms. They instrument for this R&D using
exogenous variation in effective R&D tax credit rates at the firm level. We estimate the spillover
parameter ζ in our model through indirect inference. More precisely, we replicate their instru-
mental variable regression by exogenously shocking q̄t and generating simulated economies. We
then regress the sales in the model on the R&D of other firms in the economy and match the
regression coefficient to the one in Bloom, Schankerman, and Van Reenen (2013). The fit we
obtain is very close. This process helps us identify the externality strength ζ.

Elasticity of R&D investment to R&D costs, M9: The final moment is the elasticity of R&D
investments to R&D costs. This has been estimated in many papers and we pick one of the most
respected sources, which is Bloom et al. (2002) who find an elasticity of R&D to user costs of
-0.35. Our model matches this very well.

Goodness of Fit: Non-targeted moments. To check whether the fit of our estimated model is
good even for non-targeted moments, we provide in Table 4 the values of four important and
non-targeted moments in the data and the model, which pertain to the lifecycle of firms or to the
skewness and tails of the sales and R&D distributions. These are the sales growth of the bottom
90% firms versus the sales growth of the top 10% firms (as ranked by sales growth in their first 5
years); the ratio of sales for old versus young firms; and the R&D intensities (i.e., R&D divided
by sales) for bottom 90% versus top 10% firms. The fit is quite good, lending further credibility
to our estimation and confirming that we are able to also capture the more detailed tail behavior
of the data.
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Table 4: Goodness of fit for non-targeted moments

Data Model

Sales growth bottom 90% vs. top 10% 0.03 0.04
R&D/Sales for bottom 90% 0.038 0.034
R&D/Sales for top 10% 0.052 0.042
Ratio sales for old firms vs. young firms 1.73 2.32

5.3 Results

Table 2 shows the estimated parameters of the model. Focusing on some of the key parameters
that were highlighted in Section 4, we see that based on the data, R&D investments are highly
complementary to firm research productivity: highly productive firms are disproportionately
good at transforming R&D inputs into innovation. The type persistence is moderate, with p̃ =

0.63. We can now simulate the optimal allocations and wedges, presented in analytical form in
Section 4.

Gross incentives and net incentives: A brief discussion of gross and net incentives for R&D is
useful here (and in practice) when thinking about the magnitudes of incentives or disincentives
actually provided for R&D. Let’s illustrate the difference with linear taxes, to make it simpler. If
the profit tax applies to profits gross of R&D spending, i.e., if R&D expenses are not deductible
from the corporate tax base, the gross subsidy rate s̃ is such that the firm’s per-period payoff is:

π(1− τ)− (1− s̃)M(r)

The net incentive on R&D – the rate that would apply to R&D expenses if they were also de-
ductible from the profit tax base– is denoted by s and is defined such that the payoff of the firm
is:

(π −M(r))(1− τ)− (1− s)M(r)

With a gross subsidy s̃, the net incentive is not captured by the subsidy rate itself, since the profit
tax captures part of the return to R&D investments. Thus, a share of the gross subsidy simply
goes towards cancelling out that disincentive effect from the profit tax. The net incentive is driven
by the difference between the gross linear subsidy s̃ and the tax τ: s = s̃ − τ. Put differently,
there are two ways to incentivize R&D: either tax its returns less (the −τ term), or subsidize its
costs more (the s̃ term). As we will see, for screening purposes one way may be better than the
other. Converting the combination of corporate income taxes and subsidies to a “net incentive”
is also of great practical use, since different countries’ systems load incentives on different parts
of the tax code.

To highlight this distinction, in the figures below, in addition to depicting s(θt), we also show
the “gross” R&D wedge s̃(θt), namely the gap between marginal costs and marginal benefits of
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R&D, taking into account the R&D effort wedge, i.e., that there is simultaneously a tax on profits.
Furthermore, to facilitate an interpretation of the wedges as tax and subsidy rates, we slightly
redefine the profit and R&D wedges, respectively, as fractions of profits and R&D costs. The
R&D subsidy rate s̃(θt) is now the fraction of the cost M(r) that the firm does not have to pay,
while the profit wedge τ̃(θt) is the fraction of profits that the firm pays, i.e.:26

s̃(θt) = 1− 1
R

1
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(
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In the linear example above, s is directly comparable to the wedge s(θt)/M′(r) from Section 4,
while s̃ is comparable to s̃(θt).

5.3.1 Cross-sectional Patterns of the Optimal Allocations

Panels C and D of Figure 2 plot the optimal profit wedge τ̃(θt), the gross R&D wedge s̃(θt),
and the corresponding net R&D wedge s(θt)/M′(r) for firms of different profit levels and R&D
investments for ages t = 2, 5, and 15. Panels E and F also represent these same wedges, but
against unobservable productivity on the horizontal axis.

The wedges on profits are negative, while those on R&D investment are positive. This means
that on both the effort and R&D investment side, firms are incentivized to provide more of these
inputs than they otherwise would in the laissez-faire. Thinking back of the optimal wedge for-
mulas in Section 4, this is to account for the monopoly distortion effect (incentivize monopolists
to produce more indirectly) and the Pigouvian correction effect (i.e., to correct for the spillover),
while still screening firms. It is worth clarifying that these are of course akin to marginal taxes
(or subsidies), not average or total taxes. On balance, the government is still raising positive net
revenues and consumers still get to consume a positive net output.

Let’s consider how wedges vary by firm type, levels of profits, and R&D expenses, remem-
bering the theoretical discussion in Section 4. Incentives are described by the profit wedge and
the net R&D wedge s(θt). For any given levels of the monopoly distortion and the Pigouvian cor-
rection terms, the screening term is larger in absolute value for lower type firms. This is the logic
of screening models described before: since it is higher type firms that are tempted to pretend
to be lower types, lower types firms’ allocations are distorted to prevent this from happening.
For the profit wedge, the screening term is positive, which means that higher productivity firms

26 s̃(θt) and τ̃ are related to the wedges from Proposition 1 through
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will face a lower profit wedge (i.e, a less positive marginal profit tax or a higher marginal profit
subsidy). For the R&D net wedge, the screening term’s sign depends on 1− ρθr. According to
our estimation ρθr > 1, and so that the screening term is negative. Hence, the net R&D wedge
is larger for higher type firms. When ρθr > 1, R&D investments benefit disproportionately high
productivity firms. It is better to incentivize R&D investments less for the lower productivity
firms, as this makes mimicking more attractive for high productivity firms.27 In short, lower
productivity firms which have no comparative advantage at innovation here are not incentivized
as much to invest in R&D, so that high productivity firms can be incentivized better. Naturally,
they are still incentivized to some (possibly even to a large) extent because of the monopoly and
Pigouvian corrections.

This logic is illustrated in Panels E and F, where the screening terms of the very high type
firms converge almost entirely to the monopoly and the Pigouvian correction terms. Since high
type firms also invest more in R&D and have larger profits, the wedges follow the exact same
pattern when plotted against observables, namely profits (panel C) and R&D investments (panel
D). It is worth reiterating that what is summarizes the incentive provision for innovation is the net
wedge; the gross wedge is depicted as it matches better the intuitions that comes from explicit
subsidies or taxes. The gross wedge is smaller for higher type firms, because it is partially
compensating for the (lower) profit wedge, but nevertheless, the net incentive for R&D provided
is larger for higher productivity firms.

High productivity firms are on net more incentivized to invest in innovation and this incentive
comes from a lower profit wedge rather than from a higher gross R&D wedge. This is the best
mechanism for screening: higher productivity firms will be able to generate more profits from
the same research investments, so the way to attract them to a given allocation that features more
R&D investments (without attracting low productivity firms) is by letting the profit wedge at that
allocation be lower, rather than by making the R&D wedge higher. This will encourage them to
put in more of the unobserved innovation input which cannot be directly subsidized. In some
sense, this is “performance-based” taxation, where good performance, rather than simply more
(observable) inputs is rewarded.

Keep in mind, however, that this discussion is still about wedges. When it comes to the
(approximate) implementation using simpler policies that we consider in Section 6, a low profit
wedge for higher research productivity firms can approximately be achieved in several ways. The
most immediate policy that perfectly mirrors the wedges features a lower marginal profit taxes
on more profitable firms and lower marginal subsidy at higher levels of R&D investments. But,
quantitatively, other implementations may work similarly well, if the loss from fine-tuning is
small. For instance, a constant profit tax that is more generous than it should for low profit
firms, and at about the right level for high profit firms could do reasonably well if the loss from

27Recall that a higher R&D wedge does not mean a higher investment in R&D; it just means a higher incentive
relative to the laissez-faire. In the laissez-faire, low research productivity firms already invest much less than high
research productivity firms and this pattern is not overturned despite the incentive provision.
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giving low profit firms a too generous tax is quantitatively small.
Panel C and D of Figure 3 shows the optimal inputs for firms of different productivities for

different ages. Higher research productivity firms should optimally provide more effort and
invest more in R&D. Given that the estimated parameters imply that ρlθ > 0 and ρrθ > 0,
effort and R&D expenses of higher productivity firms have higher marginal benefits in terms of
innovation, and, in turn, their investments of R&D and effort generate more spillovers for other
firms.

5.3.2 Age Patterns of the Optimal Allocations

As explained in Section 4, age patterns can in principle arise for two reasons: the fact that
screening policies are set at age one with full commitment and a possible age-dependency of the
primitives of the model. Panels A and B from Figure 2 plot the optimal wedges, averaged over
firm type at a given age.

Younger firms simultaneously have their profits taxed at a higher rate (i.e., subsidized at a
lower rate here) and their R&D investment expenses on net subsidized less. When types are less
than fully persistent (the estimated persistence parameter is 0.63), the screening terms in Propo-
sition 1 are largest in absolute values early in life when the firm has the most private information
and decay with time, at a rate that is decreasing in the persistence. Hence, it is optimal to distort
the allocations more among young firms in order to reduce overall informational rents. Over
time, as the screening term decays, the wedges for firms of different productivities converge to
the Pigouvian correction and the monopoly valuation term. Because the screening term on the
R&D wedge is negative, this means that the net R&D wedge converges to these corrective terms
from below, while the profit wedge converges form above.

5.4 Comparative Statics: The Role of Persistence, Complementarity and the Strength
of the Spillover

In Figure 4, we quantify the effect of the key parameters. Panels A and B depict the optimal
wedges when ρθr = 0.8 < ρlr = 1. When ρθr is smaller, the optimal R&D wedge is larger
especially for lower productivity firms. In this case, since it is not just high productivity firms
that benefit from R&D investments, there is no need to reduce the innovation incentives provided
to low productivity firms by as much to prevent high productivity firms from mimicking them.
In addition, the closer ρθr is to 1, and the flatter the net wedge is for different ages, as it is then
more and more driven by only the monopoly valuation and Pigouvian correction terms.

The persistence of the firm’s research productivity process affects the optimal policies very
significantly, in particular the age pattern. Panels C and D depict the wedges for a higher value
of persistence than our benchmark one, namely for p̃ = 0.9. With a higher persistence, wedges
decay at a lower rate. We provide several more comparative statics and robustness checks on
the value and shape of the persistence in the Supplementary materials, such as a first-order au-
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toregressive process instead of the benchmark logarithmic autoregressive process, an increasing
persistence over the life cycle that has the same average value as our benchmark estimate, a lower
persistence (p = 0.5), and a higher persistence (p = 0.9). The speed of convergence to the Pigou-
vian and monopoly correction terms is strongly shaped by the type process. Yet, although the
persistence of this stochastic process affects the rate of decay of the wedges very significantly, it
does not change the qualitative findings described above. In addition, a more persistent process
increases the ability of the planner to provide dynamic incentives and improves the allocations:
there are higher levels of effort and R&D investment for firms of all productivities.

Finally, panels E and F depict the wedges when there is no spillover (ζ = 0.0). In this case,
the wedges simply correct for the monopoly distortion. Unsurprisingly, a lack of spillover leads
to lower R&D effort and investment wedges.

5.5 Robustness Checks and Sensitivity Analysis

We provide many robustness checks and sensitivity analyses in the Supplementary Materials
S.5: We perform a type of two-step GMM estimation with weights taken from the variance-
covariance matrix of moment. Furthermore, we explore the role of the stochastic type process
assumed, as discussed above. We also vary the value of β, where higher β represents a higher
degree of market power, as it increases the markup over marginal costs that the intermediate
good producer can charge. At the same time, it also means that the quality of each differentiated
product is more valued by consumers. On balance, there is more investment in R&D and more
effort at the optimum when β is higher. In addition, we consider higher rates of depreciation of
innovation, of δ = 0.15 and δ = 0.3 respectively. The higher the rate of depreciation, the higher
the wedges have to be to induce firms to invest sufficiently much (relative to what they would do
if left to choose). Naturally, the higher the rate at which knowledge depreciates and the lower the
optimal investments, step sizes, and resulting innovation that can be stimulated. We also show
what happens when the cost of R&D is less convex, i.e., when η = 1. This barely changes the
wedges, as they represent the share of costs that is subsidized. However, as can be expected, the
level of R&D effort and incentives that can be incentivized are larger when costs are less convex.
Finally, we re-restimate the model only on publicly-traded firms from COMPUSTAT matched
to patent data and show what happens with a finite firm life cycle, in which case the horizon
becomes important.

6 Simpler Innovation Policies

Until now we have considered a fully unrestricted mechanism that does not place constraints
other than incentive compatibility on the policies. In this section, we consider restricted, simpler
policies. We solve for the optimal policy within each of the restricted classes of policies consid-
ered, using the estimated parameters from Section 5. We then compute the welfare loss relative to
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the welfare obtained in the unrestricted mechanism. Table 5 shows the results. In this table, each
panel considers a separate class of policies, ranging step-by-step from linear to nonlinear and
non-separable ones. The two columns show, respectively, the welfare achieved from the optimal
policy in each class relative to (i) our benchmark optimal planner solution and (ii) the limit case
in which there is no spillover (ζ = 0) so that only the monopoly distortion has to be corrected.

The first row shows the welfare level from the current policies in the U.S., i.e., approximated
with a linear 23% effective corporate tax rate and a 19% effective R&D subsidy rate. Current
policies only achieve 18% of the gain relative to our benchmark planner problem. If there were
no spillovers at all, current policies would do less poorly and achieve 31.1% of the welfare of the
optimum.

The next rows show progressively more complex policies. The optimal policy within the
linear class with a linear profit tax and a linear subsidy (Panel B) does much better than the
current one and yields 89% of the welfare gain from the full optimum and 88.5% if there is
no spillover. Adding an interaction term between the marginal tax rate and the level of R&D
spending (Panel C) improves the welfare gains further.

The biggest gain comes from a nonlinear Heathcote-Storesletten-Violante (HSV) policy, as
used by Heathcote et al. (2017) and Heathcote et al. (2019). The HSV policy is a parsimonious
parameterized tax function, with one parameter controlling the average level of taxes, and an-
other controlling the progressivity. We extend it here to allow for a constant component of the
marginal tax rate τ0, and we parameterize both the profit tax and the R&D subsidy with this
HSV-type function. The optimal HSV policy reaps a full 97.4% of the full welfare gain of the
optimal mechanism (and up to 98.2% in the case with no spillover). Once this nonlinearity is al-
lowed for, additional nonseparability between profits and R&D expenses brings no further gain
(panel G). The marginal profit tax and the marginal R&D subsidy implied by this HSV function
exactly mimic the patterns of the profit and the gross R&D wedges in Panels C and D of Figure
2 with lower marginal taxes (higher marginal profit subsidies) on higher profit firms and lower
marginal R&D subsidies for higher levels of R&D investments.

One may further ask whether it is the nonlinearity in the profit tax or the nonlinearity in
the subsidy that quantitatively matters most. We answer this question by simplifying either the
subsidy to be linear (Panel E) or the tax to be linear (Panel F) while leaving the other function
to be HSV-type as in Panel D. It is clear that the most important gain comes from a nonlinear
R&D subsidy: A linear subsidy plus HSV tax system yields only 94.7% of the full gain. On the
contrary, linearizing the profit tax generates only a very small welfare loss of 0.1% relative to
the fully nonlinear HSV policy. Thus, in our estimated model, the most important quantitative
features are, first, the nonlinearity in the R&D subsidy that takes a HSV form and which provides
lower marginal subsidies for higher levels of R&D investment. Second, although the constant
profit tax in this case provides too generous incentives to the low profitability firms (and just
about the right level for high profitability firms), that loss is quantitatively very small as they
make low profits to start with. This is a particularly useful finding because corporate taxes are
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Table 5: Welfare from Optimal Simpler Policies

Policy Type Welfare Achieved Relative to Full Optimum

Benchmark No spillovers

A. Current US policy

T′(π) = 0.23 S′(M) = 0.19 18% 31.1%

B. Optimal Linear

T′(π) = τ0 S′(M) = s0 89% 88.5%

C. Linear with Interaction Term

T′(π, M) = τ0 + τ1M S′(M) = s0 93.5% 93.7%

D. Heathcote-Storesletten-Violante (HSV)

T′(π) = τ0 − τ1πτ2 S′(M) = s0 − s1Ms2 97.4% 98.2%

E. HSV tax on profits and linear subsidy

T′(π) = τ0 S′(M) = s0 − s1Ms2 94.7% 95.6%

F. HSV subsidy on R&D and linear profit tax

T′(π) = τ0 S′(M) = s0 − s1Ms2 97.3% 97.4%

G. HSV with Interaction Term

T′(π, M) = τ0 + τ3Ms2 − τ1πτ2 97.4% 98.3 %
S′(M) = s0 − s1Ms2

Notes: The table shows the share of welfare from the full unrestricted optimum that is achieved by the optimal
policy within each class. Each panel shows a different class. Column (1) shows the welfare relative to the benchmark
optimum; Column (3) for the benchmark optimum but when there is no spillover ζ = 0).
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typically more or less linear around the world. On the other hand, one can easily imagine a
more nuanced HSV-type R&D subsidy scheme being implemented, where the marginal subsidy
depends on the investment level.

Does this mean that it is in general optimal to subsidize profits at the margin or have (weakly)
lower marginal profit taxes on more profitable firms? Of course, this is the right corporate
tax system for innovating firms and not all firms in the economy are innovating ones. The
reasons to tax or subsidize non-innovating firms would be different and could be nested in our
model if spillovers are shut off and the market between intermediate and final good producers
is calibrated to match the one for non-innovating firms. Our framework for firm taxation is
malleable and quite general and we think can be used to study firm taxation more broadly.
If the government can set different corporate tax systems based on whether a firm is in an
innovating sector, the tax system presented in this paper would apply to the innovative sectors.
If the government cannot at all distinguish between innovating and non-innovating sectors, then
the optimal tax system would be a mix of the optimal tax systems for the non-innovating and
innovating sectors, allowing for possible shifting between the two. This would be a great avenue
for future research, leveraging the methods in this paper to address more complex issues in
corporate taxation.

7 Conclusion

In this project, we study how to most efficiently use tax policy to stimulate R&D investments
when there are spillovers between firms. Our core contribution is to introduce asymmetric infor-
mation in a dynamic firm taxation model with spillovers.

With our core setup and methodology in place, additional aspects of R&D investments and
innovation by firms can be incorporated, and we discussed some possible generalizations and
extensions. Even though we motivate our analysis specifically with R&D investments, our re-
sults and the theoretical and numerical solution methods are much more broadly applicable to
the provision of firm incentives in dynamic settings with asymmetric information and with other
types of investments with or without spillovers. To this end, the formulas were written in the
most generic form possible. R&D investments are just one of the potential applications of this
framework. Our framework provides a new way to think about both innovation, but also about
firm taxation more generally. Introducing asymmetric information and heterogeneous, stochas-
tic firm types, captures many features of the real world and could allow to fruitfully address
important questions in policy design for firms.

We hope that future research could build on this fruitful combination of macro-level policy
questions, with newly developed mechanism design techniques, which are guided by firm-level
micro data, to study the following and many other important issues: First, the competition struc-
ture in the intermediate goods market could be made endogenous to tax policy: firms would
then enter, exit, and steal products from their competitors in response to the tax incentives. Sec-
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ond, it would be very interesting to study optimal R&D policies when there is a noisy signal
about product quality which may be manipulable by firms. Third, a more extended structural
estimation focusing on the identification of the key parameters we emphasized (complementari-
ties, persistence, and strength of spillovers) for different sectors and types of products could shed
further light on optimal sector-specific policies.
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Figure 2: Optimal profit and R&D wedges

(a) Profit wedge by age (b) R&D wedges by age
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(c) Profit wedge as function of profits (d) R&D wedges as functions of R&D investments
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(e) Profit wedge as function of type θt (f) R&D wedges as functions of type θt

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

1.5

1.0

0.5

0.0

0.5 t = 2
t = 5
t = 15

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Firm Type log( )

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Net
Gross

Notes: Panel (a) plot the average optimal profit wedge at different ages; Panel (b) plots the average optimal gross and
net R&D wedges. Panels (c) and (d) plot, respectively, the optimal profit and R&D wedges for t = 2, 5, 15 for different
levels of profits and R&D investments. Panels (e) and (f) plot the same wedges, but against firm productivity type θt.
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Figure 3: Optimal allocations

(a) Investments and Effort by Age (b) Step size and Profits by Age
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Notes: The figure depicts the optimal allocations for different ages and types of firms. Panel (a) shows optimal
investments in R&D and effort for different ages; panel (b) shows the resulting step size and profits by age. Panels
(c) and (d) depict, respectively, the optimal R&D effort and R&D investments for firms of different types for ages 2, 5,
and 15.
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Figure 4: Comparative Statics: Optimal Profit and R&D Wedges

(a) Profit wedge with ρθr = 0.8 (b) R&D wedges with ρθr = 0.8
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(c) Profit wedge with p̃ = 0.9 (d) R&D wedges with p̃ = 0.9
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(e) Profit wedge with ζ = 0 (f) R&D wedges with ζ = 0
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Notes: Panels (a) and (b) show the wedges for ρθr = 0.8. Panels (c) and (d) show the wedges for p̃ = 0.9. Panels (e)
and (f) show the wedges for ζ = 0.
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Online Appendix

OA.1 Proofs of the Propositions in the Main Text

Proof of Proposition 1:

Taking the FOC of program P in (18) with respect to rt(θt) yields:

[r(θt)] :
1
R

E

(
∞

∑
s=t+1

(
1− δ

R

)s−t−1 ∂Ỹ∗(θs, q̄s)

∂qs

∂λ(θt+1)

∂rt

)

− 1
R

E

(
1− F1(θ1)

f 1(θ1)
ptφ′t+1(l(θ

t+1))
λθλr

λλl
[ρθr − ρlr]

)
−M′t(r(θ

t)) + E

(
∞

∑
s=t+1

(1− δ)s−t−1ηs
∂λ(θt+1)

∂rt

)
= 0

Using the definition of the R&D wedge as:

s(θt) = M′t(r(θ
t))− 1

R
E

(
∞

∑
s=t+1

(
1− δ

R

)s−t−1 ∂πs(θs)

∂qs

∂λt+1

∂rt

)

to substitute for the marginal cost M′t(rt(θt)) in the FOC, we obtain formula (22).

Taking the FOC with respect to lt(θt) yields:

[lt(θ
t)] : E(

∞

∑
s=t

(
1− δ

R

)s−t ∂Ỹ∗(θs, q̄s)

∂qs

∂λ(θt)

∂lt
)

−1− F1(θ1)

f 1(θ1)
pt−1 ∂

∂lt
[φ′t(lt(θ

t))
∂λ(θt)/∂θt

∂λ(θt)/∂lt
])− φ′t(lt(θ

t)) + E(
∞

∑
s=t

(1− δ)s−tηs
∂λ(θt)

∂lt
) = 0

Transform the derivative of the envelope condition:

∂

∂lt

[
φlt

λθt

λlt

]
=

(
φll,t − φlt

λll,t

λlt

)
λθt

λlt
+ φlt

λθl,t

λlt
=

φltλθt

λt




(
φll,t − φlt

λll,t
λlt

)

φlt

λt

λlt
+

λθl,tλt

λθtλlt




=
φltλθt

λt

[
1

ε l,1−τ

λt

λltlt
+ ρθl,t

]
=

φltλθt

λt

[
1

ε l,1−τ

1
ελl,t

+ ρθl,t

]

Using the definition of the wedge τ(θt) to substitute for φ′t(lt(θt)) yields the formula in the
text.

Proof of Implementation Result:
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For every period, define the following objects:

Ds(θ
s−1, θs) = E

(
∞

∑
t=s

I(s),t

(
1
R

)t−s ∂vt

∂θt
|θs

)

Qs(θ
s−1, θs) =

∫ θs

θ
Ds(θ

s−1, q)dq

where the expectation is explicitly conditioned on history θt.
With a stochastic process such that the impulse response is independent of θt except through

θ1 and θt, we have that I(s),t = i(θ1, θt, t) for some function i(). In addition, ∂vt
∂θt

= φ′t(lt(θt))
∂λ(θt)

∂θt
∂λ(θt)

∂lt

,

so that:

Ds(θ
s−1, θs) = E

(
∞

∑
t=s

(
1
R

)t−s

i(θ1, θt, t)φ′t(lt(θ
t))

∂λ(θt)/∂θt

∂λ(θt)/∂lt
|θs

)

In the unrestricted mechanism, the transfers provided every period are:

Tt(θ
t) = Qt(θ

t−1, θt)−
1
R

Et(Qt+1(θ
t, θt+1)) + φ(lt(θ

t))) (OA1)

Given the time separable utility and the assumption on the impulse response functions, the
transfer hence depends on λt, rt−1, θt, and θ1 (and, naturally, on age t). Denote it by T∗t (λt, rt−1, θt, θ1).

With the price subsidy in place, the total price faced by the monopolist is Y(q,k)
k . Hence, con-

ditional on qt, the monopolist maximizes social surplus from production and the choice will be a
deterministic function of quality, denoted by kt(qt). As a result, profits earned are a deterministic
function of quality, denoted by πt(qt).

Note that in period 1, since r0 and q0 are given and observed, the realization

q1 = H(q0, λ1(l(θ1), r(θ0), θ1)

can be inverted to obtain θ1 (at the optimal allocation, under incentive compatibility) as long as
for every θ1 there is an uniquely optimal l(θ1). Hence, we will use conditioning on q1 instead
of θ1. Let Θt(q1, rt−1, qt−1) be the set of all histories (including θt) that are consistent with q1 in
period 1, and rt−1 and qt−1. For each θt in this set, the optimal allocations and transfer are the
same (independent of what exactly happened in the full past). Let r∗t (θ), l∗t (θ) be the optimal
allocations given to each θ in this set (they are equal for each such θ by inspection of the wedge
formulas at the optimum). The implied optimal quality is then q∗t (θ) = qt−1 + λt(rt−1, l∗t (θ), θ).

We now have to make the tax system such that allocations which do not arise in the Planner’s
solution are very unattractive to the agent. First, we can rule out allocations that never occur
for any θ in Θt(q1, rt−1, qt−1) by making the transfer at points q∗t (θ), r∗t (θ) following qt−1, rt−1, q1

highly negative. We can also directly rule out histories qt−1 and rt−1 which should never occur
in the Planner’s problem in the same way.
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For all remaining consistent histories and for each θ in Θt(q1, rt−1, qt−1), the tax or transfer
given as a function of the observables needs to be such that:

Tt(q∗t (θ), r∗t (θ), qt−1, rt−1, q1) + πt(q∗t (θ) = T∗t (λt(rt−1, l∗t (θ), θ), rt−1, θ)

Consider the firm’s choice. First, for given rt−1, qt−1, and θ1, the firm should rationally only
select a pair q∗t , r∗t that is consistent with some θ ∈ Θt(q1, rt−1, qt−1) or else the transfer it receives
would be very negative. For each rt−1, qt−1, and θ1, if the firm chooses q∗t (θ) and r∗t (θ) meant for
type θ in the planner’s problem, it receives the utility it would get from reporting to be type θ in
the planner problem. By incentive compatibility, the firm will choose the allocation meant for its
true type realization.

OA.2 Worked example with Constant Markups

Production

We can specialize the functional form to one that delivers constant markups. Let the cost
of production be C(k, q̄) = k

q̄ζ , and the output as valued by consumers be Y(qt(θt), kt(θt)) =
1

1−β qt(θt)βkt(θt)1−β. The demand function under a patent system that grants monopoly rights is
then:

p(qt(θ
t), kt(θ

t)) = qt(θ
t)βkt(θ

t)−β

and the quantity chosen by the monopolist is:

k(qt(θ
t), q̄t) = [(1− β)q̄t

ζ ]
1
β qt(θ

t)

At the optimum, the price is a constant markup over marginal cost equal to:

p(q̄t) =
1

(1− β)q̄t
ζ

Profits are then given by

π(qt(θ
t), q̄t) = qt(θ

t)(1-β)
1−β

β · β · q̄t
ζ

1−β
β

Y(qt(θt), q̄t), the output from the private producer in the laissez-faire with a monopoly right, is:

Y(qt(θ
t), q̄t) = Y(qt(θ

t), k(qt(θ
t), q̄t)) =

1
1− β

qt(θ
t)((1− β)q̄ζ

t )
1−β

β
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Hence, the final good in the private market equilibrium is given by:

Yt =
∫

Θt
Y(qt(θ

t), q̄t)P(θt) =
∫

Θt

1
1− β

qt(θ
t)[(1-β)q̄t

ζ ]
1−β

β P(θt)dθt

Conditional on a given quality qt(θt), the production choice of the planner would be such
that:

k∗(qt(θ
t), q̄t) = q̄t

ζ
β qt(θ

t) > k(qt(θ
t), q̄t)

A special case with very simple wedges
We can impose additional restrictions to obtain particularly easy characterizations of the

wedges. Assume the functional forms in Table 2, but also assume the special case in which
ρθr = ρrl = 1, so that the screening term in the R&D wedge is zero.

Let

Be = 1 + ζ

(
1− β

β

)

Bm =
2− β

1− β

and

Gt = H1(θ1)pt−1(1 + γ)(1− α)

Then, we can show that in this special case,

τt

1 + Gt
= −

(
1− 1

Be

)
− 1

Be

(
1− 1

Bm

)

st =

(
1− 1

Be

)
+

1
Be

(
1− 1

Bm

)

and so the profit wedge τt depends only on time t and the initial state θ1 and tends to a
constant profit subsidy −

(
1− 1

Be

)
− 1

Be

(
1− 1

Bm

)
< 0 over time. The net subsidy wedge is

constant over time and type and equal to exactly −τt. Both wedges are increasing in absolute
value when the strength of the spillover (ζ) increases.

OA.3 Extensions

OA.1 Heterogeneity in Production Efficiency

Suppose that firms are also heterogeneous in their production productivities, denoted by θp, with
realization θ

p
t and history θp,t. For instance, production costs could be C(k, q̄t, θ

p
t ). Allocations

are now specified as functions of the full set of histories (θt, θp,t). If production productivity is
observable, the planner will simply condition on it for each history of research productivities
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θt. In fact, as long as quality q and quantity k are observable, the planner can perfectly infer
θp,t from the observed production choices. Net output is then Ỹ(qt(θt, θp,t), q̄t, θ

p
t ) and profits are

π(qt(θt, θp,t), q̄t, θ
p
t ). Similarly to before, we can define Πt(θt, θp,t) :=

(
∑∞

s=t
( 1−δ

R

)s−t ∂π(qs(θs,θp,s),q̄s,θp
s )

∂qs

)

as the marginal impact on future profit flows from an increase in quality. Let Qt(θt, θp,t) =

∑∞
s=t
( 1−δ

R

)s−t ∂Ỹ(qs(θs,θp,s),q̄s,θp
s )

∂qs
be the marginal impact of quality on on future expected output net

of production costs.

Then, the optimal profit wedge can be set for each history (θt, θp,t) and satisfies:

τ(θt, θp,t) = −E

(
∞

∑
s=t

(
1− δ

R

)s−t

ηs

)
∂λt

∂lt
−E(Qt(θ

t, θp,t)−Πt(θ
t, θp,t))

∂λt

∂lt

+
1− F1(θ1)

f 1(θ1)
I1,t(θ

t)
φ′tλθt

λt

[
1

ε l,1−τ

1
ελl,t

+ ρθl,t

]

and the optimal R&D subsidy is given by:

s(θt, θp,t) = E

(
∞

∑
s=t+1

(
1− δ

R

)s−t−1

ηs
∂λt+1

∂rt

)
+ E

((
Qt+1(θ

t+1, θp,t+1)−Πt+1(θ
t+1, θp,t+1)

) ∂λ(θt+1)

∂rt

)

+
1
R

E

(
1− F1(θ1)

f 1(θ1)
I1,t+1(θ

t+1)φ′t+1(l(θ
t+1))

λθλr

λλl
(ρlr − ρθr)

)

The productivity differences only enter the monopoly valuation term, as they only affect how
effectively each firms can transform the quality into output. As a result, productivity differences
in production do not really change the previous results.

More generally, any additional heterogeneity that is observable can be treated in a similar
way, by conditioning the optimal policies on it. The problem becomes much more complicated
if there is additional unobservable heterogeneity that is correlated with research productivity
θ. Already in much simpler static settings without spillovers, Rochet and Choné (1998) show
that with two-dimensional heterogeneity there are barely any general results. Incorporating non-
trivial two-dimensional heterogeneity in a dynamic model with spillovers like this one (and being
able to estimate it) would be an important big step for future research.

Empirically, we do not let this additional observable heterogeneity (such as production sector,
technology sector, or business-cycle induced effects) contaminate the results and filter it out from
the variables thanks to fixed effects before computing our data moments. What could be quite
interesting for future research would be to actually specifically estimate the model and simu-
late differentiated optimal policies, allowing explicitly for different sectors, different technology
classes, or different parts of the business cycles.

OA.2 Different types of observable R&D investments

Suppose that there are several types of observable R&D investments that firms can make, denoted
by r1, ...rj, ..., r J . A natural interpretation would be the investments in different technology classes.
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The step size is determined as a function of the observable R&D investments, unobservable
R&D effort, and firm research productivity:

λt = λt(r1
t−1, ...rj

t−1, ..., r J
t−1, lt, θt)

We can define the Hicksian complementarity of each R&D type with firm effort and research
productivity as:

ρ
j
θr,t :=

∂2λt

∂rj
t−1∂θt

λt

∂λt
∂θt

∂λt

∂rj
t−1

and ρ
j
lr,t :=

∂2λt

∂rj
t−1∂lt

λt

∂λt
∂lt

∂λt

∂rj
t−1

Different types of R&D investments can have very different complementarity profiles with R&D
effort and firm type (or, equivalently, their exposure to risk as embodied by the stochastic type).
Some investments may generate returns with high certainty, regardless of the type realization,
while others may only yield returns when firms are particularly good or in period of good
realizations of the stochastic type.

Let the subsidy on investment rj
t be denoted by sj(θt). At the optimum, formula (22) holds

separately for each type of R&D investment wedge sj(θt). The wedge sj(θt) will be increasing
in the effect of investment j on the step size (in the Pigouvian correction term), as well as in the
relative complementarity of that investment to unobservable R&D effort relative to its comple-
mentarity with respect to firm research productivity, ρ

j
θl − ρ

j
θr.

The lesson is that while it is optimal to subsidize investments with higher externalities at
a higher rate, it is not as beneficial if these investments are also highly sensitive to the firm
productivity and firm research productivity is unobservable.

OA.3 Different Externalities from Different Types of Research

It is also possible to directly incorporate different externalities from each type of R&D invest-
ments by letting the cost function be decreasing in each aggregate investment type:

C(k, q̄1, .., q̄J) with q̄j =
∫

Θt
qj

t(θ
t)dθt and qj

t(θ
t) = qj

t(θ
t−1)(1− δ) + λ

j
t(r

j
t−1, lt, θt)

This is important in order to be able to speak to the very different spillovers from different types
of research such as basic and applied research. Basic research may only add little to the total
quality a firm’s product, but if its effect on the costs of production of other firms is important,
it will suffer from a large under-investment in the laissez-faire, as highlighted in Akcigit et al.
(2016), and will warrant a large Pigouvian correction.

At the firm level, the (single) product quality is given by

qt = (1− δ)qt−1 +
J

∑
j=1

λ
j
t(r

j
t−1, lt, θt)
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We have to impose j consistency constraints in the partial program in each period t, each with
multiplier η

j
t . Formula (22) then tells us that R&D investments with the highest spillovers (highest

η
j
t =

∫
Θt

∂Ỹ∗(qt(θt),q̄1
t ,...,q̄J

t )

∂q̄j
t

P(θt)dθt) are the ones that should be subsidized most (bearing in mind

that their complementarities with effort and firm research productivity may dampen the benefits
from subsidizing them).

OA.4 Computational Appendix

OA.1 Computational Procedure

All code is written is standard Python 3, and depends only on common numerical and scien-
tific modules such as numpy, scipy, pandas, statsmodels, patsy, and matplotlib. The parameter
estimation and optimal policy calculations are done using either the Nelder-Mead algorithm or
simulated annealing.

Because of the staggered nature of research spending and firm effort decisions, we find the
optimal decisions for a log-uniform grid of possible (θt, θt+1) values. In addition, in the case
of the optimal mechanism, one also tracks the initial type θ1, as this bears on the constraints
imposed by informational limitations.

When solving for both the optimal mechanism and the linear tax equilibrium outcome, the
solution method is constructed as a fixed point problem on the path of q̄. Because q̄ evolves
according to a firm’s research decisions and these decisions are made based on expectations that
condition on the future path of q̄, the decisions made by firms are in a sense both forward and
backward looking.

Given a certain candidate path for q̄, we can find the optimal choices for research spend-
ing and firm effort (for either the firm or the planner), which itself amounts to solving a one-
dimensional equation for each point in the type space in each time period. Using these decisions,
one can construct an updated path for q̄. When this process reaches a fixed point, we have found
the equilibrium path for q̄. In practice, as the equations characterizing firm choices are analytical
but not closed form, it is more efficient to formulate the problem as a fixed point over both the
path of q̄ and firm choices for r and l for each type. Updating is then done only using the M′(r)
and φ′(l) terms in the first order conditions. Additionally, it is useful to dampen the updating
process to avoid any numerical instabilities.

Moving to non-linear policies considerably complicates matters. In this case, the relevant
state space of the firm must include the actual value of q. As a result, we must track the joint
distribution of qt, θt, and θt+1. Conceptually the convergence process and criterion are similar to
the linear case, but the run time is much longer. The advantage is that we can entertain tax and
subsidy policies that are arbitrary (differentiable) functions of firm profit and R&D investment.

To generate simulated moments for parameter estimation, we simulate a large number of
firms (215 = 32768) for the entirety of their life cycle and compute various statistics on this
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panel of simulated data. All of the moments are relatively straightforward to calculate, with the
notable exception of the coefficients for the spillover regression (M8) and the R&D-cost elasticity
regression (M9), which are used to identify the externality parameter and various cost elasticities.

For the spillover regression (M8), we actually re-solve and re-simulate the model for a variety
of different scenarios in which innovations contribute an additional boost to average productivity
q̄, which we interpret as innovation spillovers between firms. We perform this exercise for a
variety of boost parameters centered around unity (the baseline model value). We interpret each
simulated economy as representing a particular industry with a particular level of innovation
spillovers. This mimics the exogenous variation used to identify the spillovers in the Bloom
et al. (2013) paper. Using this variation, we then run a regression of firm sales on the amount of
research spending undertaken by the firm as well as the average research spending by all firms
in that time period and industry. We then match this to an analogous regression run by Bloom
et al. (2013).

Similarly, for the R&D-cost regression (M9), we simulate a variety of economies having dif-
ferent values of the R&D cost parameters κr centered the baseline value. These differences can
represent actual difference in cost, or alternatively, differences in R&D subsidy levels or tax cred-
its. We then run a firm-level regression across time and industry of R&D investment on the level
of κr.

To generate estimates for the standard error of our parameter estimates, we take 100 draws
from the distribution induced by our data moment means and variances, fully re-estimate the
parameters of our model for each of these draws, then report the standard deviation of these
estimates. Because some of our data moments (in particular, moments M8 and M9) come from
different sources, it is not clear what the interpretation of off-diagonal elements would be. A
natural choice is to set them to zero, using a diagonal matrix for the data moment standard
errors.

OA.2 Ex Post Verification Procedure

To perform the ex post verification, we start with the allocations under truth-telling in the optimal
mechanism, λ(θt), r(θt), and T(θt) (where the transfers T(θt) are constructed following (OA1)).
These allocations are defined for all histories θt which could arise along the equilibrium path
by the optimal mechanism– thus any history θt that can never arise given the distribution of
stochastic shocks is ruled out (with, for instance, infinitely negative transfers T(θt)).

For every history θt−1, we can compute the allocations that would be assigned to an agent
of type θ who reports θ′ (not necessarily truthfully) among the feasible types in the space Θ at
time t. Under any report θ′, the agent will be assigned the allocations λ(θt−1, θ′), r(θt−1, θ′) and
T(θt−1, θ′), which are meant for the “true” type (θt−1, θ′). The agent whose true type realization
is θ chooses the report θ′ that will maximize his expected discounted payoff which is:

max
θ′

T(θt−1, θ′)− φ(λ(θt−1, θ′)/w(rt−1(θ
t−1), θ)) +

1
R

∫
ω(θt−1, θ′, θt+1) f t+1(θt+1|θ)
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The ex post verification consists in checking whether the agent will, in fact, choose θ′ = θ (i.e.,
report his true type) when faced with the set of allocations that can arise for any type at the
optimum. Note that this amounts to checking that the global incentive constraints are satisfied
at the optimal allocations derived using the first-order approach.
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