Introduction

» In theory, GPUs are very fast, ~ 1e10° FLOPS
> Not all problems are suited to these devices

» The trick is knowing when it's worth it

Architecture

» One GPU typically consists of hundreds of cores

» Each core executes one thread, cores are dynamically
clustered into blocks

» User writes a function (called a kernel) that executes
concurrently on many cores

» Device usually has ~ 1 — 2 GB of global memory

» Blocks have fast shared memory banks, cores have registers

GPU Diagram

Thread Execution Control Unit

Device Memary

Image source: The Portland Group

Memory Access

» Threads can read/write shared and global memory, but not
CPU memory

» Writes to global memory synced at end of kernel call

» Writes to shared memory can be synced within block on
command

» Writes within warp (sets of 32 threads) are automatically
synced

» Memory architecture limits amount of interdependence in
problems

Interfaces

» NVIDIA's native interface is a C++-like language called
CUDA

» OpenCL supports both NVIDIA and ATI - has bindings for C
and Fortran

» There are interfaces with
» MATLAB/Mathematica

» Python/Perl
» Fortran (PGl = $$%)

CUDA

v

Compiled language based on C++

v

Defines a new type of function called a kernel, to be run on
GPU

v

Requires basic knowledge of C and pointers

v

Allows for memory allocation on GPU and calling of kernels

v

Compiled using NVIDIA's nvcc

Simple Example |

» First we define our kernel

__global__ void vecAdd(double* x, double* y, int N)

{
int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < N) {
y[il = y[il + x[il;
}
}

» The variables blockIdx.x, blockDim.x, and threadIdx.x
are given to each instance of the kernel

Simple Example [l

v

Now we allocate memory on the device

double* d_x, d_y;

int vsize = sizeof(double)*N;
cudaMalloc ((void#**)&d_x,vsize);
cudaMalloc((void**)&d_y,vsize) ;

v

Then we copy our data over to this memory

cudaMemcpy (d_x,h_x,vsize,cudaMemcpyHostToDevice) ;

v

Finally we execute the kernel

int threadsPerBlock = 16;
int numBlocks = N/threadsPerBlock; // assume divisible
vecAdd<<<numBlocks,threadsPerBlock>>>(d_x,d_y,N);

v

Copy back to CPU using cudaMemcpy

cudaMemcpy (h_y,d_y,vsize,cudaMemcpyDeviceToHost) ;

Things to Note

> Global memory is not updated across threads - can't do
vout[i] = vin[i] + 1;
vout[i] = vout[i+1];

» Consecutive memory reads are coalesced within half-warps (16
threads)

» To construct 2D kernels, threadsPerBlock and numBlocks
are 2D (x and y)

» Volume of blocks must not exceed 512

Multiple Functions

» Can define multiple kernels that call one another
> __global__ keyword allows calling from CPU

> __device__ functions can only be called from GPU

__device_
{

return (powf(c,1.0-sigma)-1.0)/(1.0-sigma);
}

double utility(double c, double sigma)

» Device functions are automatically inlined by compiler

Shared Memory

» Shared memory - use memory across threads within block

__global__ void vec_ma(double* vin, double* vout, double* mult)
{

__shared_

_ double s_mult[M];
int tid = threadIdx.x;
int i = blockIdx.x*blockDim.x + tid;
if (1 <N) {
if (tid < M) s_mult[tid] = mult([tid];
__syncthreads() ;
double v = 0.0;
for (int j = 0; j < M; j++) {
if (i-j >= 0) v = v + vin[i-jl*s_mult[j];
}

vout[i] = v;

Shared Memory

Global Memory

HEEER

] N
N

Yy ¥V Y VY Y
12345|12|345|

1 2] 3] 4] 5

Shared Memory Block 1 Shared Memory Block 2

Shared Memory Block 3

Shared Memory

v

Declare/allocate the memory, M must be constant

__shared__ double s_mult[M];

v

Have each thread copy one value, need M < BlockSize

if (tid < M) s_mult[tid] = mult[tid];

v

Sync data across thread block

syncthreads() ;

v

Data within warp is automatically synced

Value Function lteration

» Each thread handles one state point

» Performs optimization over choice variables, updates value
function

» Or you could calculate value for each state/choice pair and
find max in 2D

Tricks

v

Texture memory for lookup tables

v

Do max absolute difference on GPU

v

Utilize shared memory (transition probabilities, shock values)

v

Debugging can be a pain, but there are ways to output text
» Use powers of 2 for grid size: modulus is slow, memory likes
to be aligned

int ik
int iz

i & (nK-1);
(i-ik) /nK;

Reduction

» Operations like sum and max must be done differently

» Here's how to do it when blockSize = 512

int tid = threadIdx.x;
int i = blockIdx.x*blockDim.x + tid;

if (tid < N) s_data[tid] = vin[il;
__syncthreads() ;

if (tid < 256) s_data[tid] = fmax(s_dataltid],s_data[tid+256]); // sync
if (tid < 128) s_data[tid] = fmax(s_dataltid],s_data[tid+128]); // sync
if (tid < 64) s_datal[tid] fmax(s_data[tid],s_datal[tid+ 64]1); // sync
if (tid < 32) {

s_data[tid] = fmax(s_data[tid],s_data[tid+ 32]);

s_datal[tid] = fmax(s_datal[tid],s_data[tid+ 16]);

s_data[tid] = fmax(s_datal[tid],s_data[tid+ 8]);

s_datal[tid] = fmax(s_data[tid],s_datal[tid+ 4]);

s_data[tid] = fmax(s_datal[tid],s_data[tid+ 2]);

s_data[tid] = fmax(s_data[tid],s_datal[tid+ 1]1);
¥

if (tid == 0) vout[blockIdx.x] = s_datal0];

Texture Memory

» Texture memory can be good for read-only memory like
lookup tables

» Fast caching, hardware interpolation

» Declare texture reference
texture<double> texRef;
» Bind it to some memory

cudaBindTexture (0,texRef,d_tex,tex_size);

» Access in kernel

double x 0.457;
double v = tex1D(texRef,x);

When To Use

v

Ideal for high computation, low memory access problems

» Many CPU problems are already memory bound
» Not a huge speedup (< 2x) on matrix multiplication

v

Local and sequential memory access patterns

» Coalesced reads are faster
» Global memory utilizes caching

v

Avoid branching execution from conditional statements
» Warp divergence - executes each branch serially

v

You always pay the fixed cost of initial and final data transfer
> Increasing returns

Use Cases

» Well suited to GPU

» Value function iteration - in 1D or 2D

» Simulation - Monte Carlo, simulated method of moments,
random numbers

» Steady states - transition matrix iteration, discrete

» Not so much

» Sorting (e.g., bubble sort)
» Histograms

» VFI accelerator

» Even for the latter cases, GPU optimized algorithms are
getting better

Other Interfaces

> BLAS routines come for free with CUDA runtime
» CULA Tools gives advanced linear algebra routines

PyCUDA provides a very easy interface in Python

mod = SourceModule("""
__global__ void vecAdd(double* x, double* y, int N)
{
int i = threadIdx.x*blockSize.x + threadldx.x;
if (1 < N) yl[i] = y[i] + x[i];
}
n ll||)
func = mod.get_function("vecAdd")
func(d_x,d_y,N,block=(BS,1,1))

MATLAB Interface (NVIDIA only)

» Compile kernel from CUDA into PTX using nvcc
nvcc -ptx -02 --ptxas-options=-v vecAdd.cu

» Load kernel into MATLAB

kern = parallel.gpu.CUDAKernel(’vecAdd.ptx’,’vecAdd.cu’);
kern.ThreadBlockSize = 32;

kern.GridSize = ceil (N/kern.ThreadBlockSize(1));

» Transfer input and allocate output
d_in = gpuArray(h_in);
d_out = gpulrray(N);

» Execute kernel and copy result back to CPU side

d_out = feval(kern,d_out,d_in,N);
h_out = gather(d_out);

» Can also write MEX file in CUDA

Hardware

» You may need to buy a new graphics card
» Can run from $100-$300+ depending on what you want

» Rapidly changing landscape - convergence of GPUs and
CPUs?

References

v

NVIDIA
developer.nvidia.com/category/zone/cuda-zone

v

CUDA Tookit (nvcc)

developer.nvidia.com/cuda-toolkit-40

v

Jesus's paper on applications to VFI and associated code

v

PyCUDA mathema.tician.de/software/pycuda

developer.nvidia.com/category/zone/cuda-zone
developer.nvidia.com/cuda-toolkit-40
mathema.tician.de/software/pycuda

