Introduction

- ▶ In theory, GPUs are very fast, $\sim 1e10^9$ FLOPS
- ▶ Not all problems are suited to these devices
- ▶ The trick is knowing when it's worth it

Architecture

- One GPU typically consists of hundreds of cores
- Each core executes one thread, cores are dynamically clustered into blocks
- User writes a function (called a kernel) that executes concurrently on many cores
- ▶ Device usually has $\sim 1-2$ GB of global memory
- ▶ Blocks have fast shared memory banks, cores have registers

GPU Diagram

Image source: The Portland Group

Memory Access

- Threads can read/write shared and global memory, but not CPU memory
- Writes to global memory synced at end of kernel call
- Writes to shared memory can be synced within block on command
- Writes within warp (sets of 32 threads) are automatically synced
- Memory architecture limits amount of interdependence in problems

Interfaces

- NVIDIA's native interface is a C++-like language called CUDA
- OpenCL supports both NVIDIA and ATI has bindings for C and Fortran
- There are interfaces with
 - MATLAB/Mathematica
 - Python/Perl
 - ► Fortran (PGI = \$\$\$)

CUDA

- ► Compiled language based on C++
- Defines a new type of function called a kernel, to be run on GPU
- Requires basic knowledge of C and pointers
- Allows for memory allocation on GPU and calling of kernels
- Compiled using NVIDIA's nvcc

Simple Example I

First we define our kernel

```
__global__ void vecAdd(double* x, double* y, int N)
{
  int i = blockIdx.x*blockDim.x + threadIdx.x;

  if (i < N) {
    y[i] = y[i] + x[i];
  }
}</pre>
```

► The variables blockIdx.x, blockDim.x, and threadIdx.x are given to each instance of the kernel

Simple Example II

Now we allocate memory on the device

```
double* d_x, d_y;
int vsize = sizeof(double)*N;
cudaMalloc((void**)&d_x,vsize);
cudaMalloc((void**)&d_y,vsize);
```

Then we copy our data over to this memory

```
cudaMemcpy(d_x,h_x,vsize,cudaMemcpyHostToDevice);
```

Finally we execute the kernel

```
int threadsPerBlock = 16;
int numBlocks = N/threadsPerBlock; // assume divisible
vecAdd<<<numBlocks,threadsPerBlock>>>(d_x,d_y,N);
```

Copy back to CPU using cudaMemcpy

```
cudaMemcpy(h_y,d_y,vsize,cudaMemcpyDeviceToHost);
```

Things to Note

Global memory is not updated across threads - can't do

```
vout[i] = vin[i] + 1;
vout[i] = vout[i+1];
```

- Consecutive memory reads are coalesced within half-warps (16 threads)
- ► To construct 2D kernels, threadsPerBlock and numBlocks are 2D (x and y)
- Volume of blocks must not exceed 512

Multiple Functions

- Can define multiple kernels that call one another
- __global__ keyword allows calling from CPU
- __device__ functions can only be called from GPU

```
__device__ double utility(double c, double sigma)
{
  return (powf(c,1.0-sigma)-1.0)/(1.0-sigma);
}
```

▶ Device functions are automatically inlined by compiler

Shared Memory

Shared memory - use memory across threads within block

```
__global__ void vec_ma(double* vin, double* vout, double* mult)
   _shared__ double s_mult[M];
  int tid = threadIdx.x;
  int i = blockIdx.x*blockDim.x + tid:
  if (i < N) {
   if (tid < M) s_mult[tid] = mult[tid];</pre>
   __syncthreads();
   double v = 0.0:
   for (int j = 0; j < M; j++) {
     if (i-j \ge 0) v = v + vin[i-j]*s_mult[j];
   vout[i] = v;
```

Shared Memory

Shared Memory

▶ Declare/allocate the memory, *M* must be constant

```
__shared__ double s_mult[M];
```

► Have each thread copy one value, need *M* < *BlockSize*

```
if (tid < M) s_mult[tid] = mult[tid];</pre>
```

Sync data across thread block

```
__syncthreads();
```

Data within warp is automatically synced

Value Function Iteration

- ► Each thread handles one state point
- Performs optimization over choice variables, updates value function
- Or you could calculate value for each state/choice pair and find max in 2D

Tricks

- Texture memory for lookup tables
- Do max absolute difference on GPU
- Utilize shared memory (transition probabilities, shock values)
- Debugging can be a pain, but there are ways to output text
- ▶ Use powers of 2 for grid size: modulus is slow, memory likes to be aligned

```
int ik = i & (nK-1);
int iz = (i-ik)/nK;
```

Reduction

- Operations like sum and max must be done differently
- ► Here's how to do it when blockSize = 512

```
int tid = threadIdx.x;
int i = blockIdx.x*blockDim.x + tid:
if (tid < N) s_data[tid] = vin[i];</pre>
__syncthreads();
if (tid < 256) s_data[tid] = fmax(s_data[tid],s_data[tid+256]); // sync
if (tid < 128) s_data[tid] = fmax(s_data[tid],s_data[tid+128]); // sync
if (tid < 64) s_data[tid] = fmax(s_data[tid],s_data[tid+64]); // sync</pre>
if (tid < 32) {
  s_data[tid] = fmax(s_data[tid],s_data[tid+ 32]);
  s_data[tid] = fmax(s_data[tid],s_data[tid+ 16]);
  s_data[tid] = fmax(s_data[tid],s_data[tid+ 8]);
  s_data[tid] = fmax(s_data[tid],s_data[tid+ 4]);
  s_data[tid] = fmax(s_data[tid],s_data[tid+ 2]);
  s data[tid] = fmax(s data[tid].s data[tid+ 1]);
}
if (tid == 0) vout[blockIdx.x] = s data[0]:
```

Texture Memory

- ► Texture memory can be good for read-only memory like lookup tables
- ► Fast caching, hardware interpolation
- Declare texture reference

```
texture<double> texRef;
```

▶ Bind it to some memory

```
cudaBindTexture(0,texRef,d_tex,tex_size);
```

Access in kernel

```
double x = 0.457;
double v = tex1D(texRef,x);
```

When To Use

- Ideal for high computation, low memory access problems
 - Many CPU problems are already memory bound
 - ▶ Not a huge speedup (< 2x) on matrix multiplication
- Local and sequential memory access patterns
 - Coalesced reads are faster
 - Global memory utilizes caching
- Avoid branching execution from conditional statements
 - ► Warp divergence executes each branch serially
- You always pay the fixed cost of initial and final data transfer
 - Increasing returns

Use Cases

- Well suited to GPU
 - Value function iteration in 1D or 2D
 - Simulation Monte Carlo, simulated method of moments, random numbers
 - Steady states transition matrix iteration, discrete
- ▶ Not so much
 - Sorting (e.g., bubble sort)
 - Histograms
 - VFI accelerator
- Even for the latter cases, GPU optimized algorithms are getting better

Other Interfaces

- ▶ BLAS routines come for free with CUDA runtime
- CULA Tools gives advanced linear algebra routines
- PyCUDA provides a very easy interface in Python

```
mod = SourceModule("""
   __global__ void vecAdd(double* x, double* y, int N)
   {
     int i = threadIdx.x*blockSize.x + threadIdx.x;
     if (i < N) y[i] = y[i] + x[i];
   }
   """)
func = mod.get_function("vecAdd")
func(d_x,d_y,N,block=(BS,1,1))</pre>
```

MATLAB Interface (NVIDIA only)

Compile kernel from CUDA into PTX using nvcc

```
nvcc -ptx -02 --ptxas-options=-v vecAdd.cu
```

Load kernel into MATLAB

```
kern = parallel.gpu.CUDAKernel('vecAdd.ptx','vecAdd.cu');
kern.ThreadBlockSize = 32;
kern.GridSize = ceil(N/kern.ThreadBlockSize(1));
```

Transfer input and allocate output

```
d_in = gpuArray(h_in);
d_out = gpuArray(N);
```

Execute kernel and copy result back to CPU side

```
d_out = feval(kern,d_out,d_in,N);
h_out = gather(d_out);
```

Can also write MEX file in CUDA

Hardware

- You may need to buy a new graphics card
- ► Can run from \$100-\$300+ depending on what you want
- Rapidly changing landscape convergence of GPUs and CPUs?

References

- NVIDIA developer.nvidia.com/category/zone/cuda-zone
- ► CUDA Tookit (nvcc) developer.nvidia.com/cuda-toolkit-40
- Jesus's paper on applications to VFI and associated code
- PyCUDA mathema.tician.de/software/pycuda