
Prelim Solutions 2024

1 Eco-Malthus

(a) For the environmental resource, we find

gE =
Ė

E
= γ − δ · L

E
= γ − δ

e

For population we find need to find the standard of living equation

y =
Y

L
= z

(
E

L

)α

= zeα

And then for population we find

gL = θ(y − ȳ) = θ(zeα − ȳ)

(b) Here we plot both gE and gL. Note that the intersections can have growth (y)

values that are of any sign, though here we see the case where they straddle zero.

There are different cases depending on the level of overlap between the two growth

curves. In the case above, there are two intersection points. The larger of the two (e∗2)

will be stable, while the smaller (e∗1) will be unstable. Additionally, convergence to

e = 0 is possible if the starting value is below e∗1, otherwise we converge to e∗2. In the
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interior steady state, e will converge to a constant (which in general can be positive

or negative) and both the ecological resource (E) and the population (L) will grow

at a common rate.

Another possible case is where there is no intersection between the curves (the single

intersection case is measure zero). This is always possible for sufficiently large tech-

nology z or demographic parameter θ. In this case, population growth will always

dominate resource growth and we will get e → 0.

(c) Here we do the simple computations

0 = gE(e
∗
E) = γ − δ

e∗E
⇒ e∗E =

δ

γ

0 = gL(e
∗
L) = θ(z(e∗L)

α − ȳ) ⇒ e∗L =
( ȳ
z

) 1
α

One can see graphically that there is a positive intersection between the curves if (but

not only if)

e∗E < e∗L

δ

γ
<

( ȳ
z

) 1
α

z < ȳ
(γ
δ

)α

since gE is bounded above by γ, while gL grows without bound as e rises.

(d) Looking at the graph above, an increase in technology will shift the gL curve

upwards. In the case that we are in a positive growth steady state (e∗2), this will shift

the e∗2 to the left (lower). The resulting growth rate will also be lower, as the gE curve

is upward sloping. Thus gL will be lower, and hence y will be lower as well.

For a sufficiently large increase in z, we shift regimes into the no intersection case,

and the steady state value of e will collapse to zero.

2 The Big One

(a) Using the standard approach, we find

ȧ+ c = (r − n)a+ w
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Then the Hamiltonian is (with discount rate ρ− n)

H = u(c) + µ [(r − n)a+ w − c]

The conditions for optimality are

0 = Hc = u′(c)− µ

(ρ− n)µ− µ̇ = Ha = (r − n)µ

Combining these we find

ċ

c
= − µ̇

µ
= r − ρ

which together with the present value budget constraint characterizes the optimal

consumption path.

(b) The factor prices should satisfy

R = FK = αz

(
L

K

)1−α

= αzkα−1

w = FL = (1− α)z

(
K

L

)α

= (1− α)zkα

The budget equation then simplifies to

k̇ + c = zkα − (δ + n)k

And so the system of equations can be expressed as

k̇ = zkα − (δ + n)k − c

ċ = c
[
αzkα−1 − (δ + ρ)

]
(c) The phase diagram looks the same as in the notes, with the null-clines defined by

k̇ = 0 ⇔ c = zkα − (δ + n)k

ċ = 0 ⇔ k =

(
αz

δ + ρ

) 1
1−α

= k∗

So we have k∗ above and c∗ simplifies to

c∗ = k∗
[
δ + ρ

α
− (δ + n)

]
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which is positive by virtue of ρ− n > 0.

(d) You can think about this case graphically through the phase diagram. Take

the stable arm path (k, c) and project out to (k/0.7, c). At discovery, we want to

jump down from c∗ so that we hit the projected stable arm after ten years. Then

after the asteroid hits, we’ll be exactly on the regular stable arm and will recover

monotonically. Critically, there will be no discontinuity in c at impact, as the impact

was anticipated. The only discontinuity will be at asteroid discovery, as we gained

new information here and reoptimized.

The time plot for c will look like: drop at discovery, slow decline until impact, then

exponential recovery. The time plot for k will look like: start buildup at discovery,

large drop at impact, then exponential recovery.
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