
Lecture 5: Firm Dynamics

This lecture will be a hybrid of both theoretical and empirical elements. We’ve

already seen a number of growth models featuring basic theories of firm dynam-

ics. Now we’ll look at this problem in more detail from two angles.

First, we’ll investigate of model of firm dynamics proposed by Luttmer (2011).

This paper starts with the following motivational trends:

1. The firm employment size distribution is Pareto with tail index ζ ≈ 1.05.

This is close to the case of Zipf’s Law where ζ = 1.

2. Average firm growth rates satisfy Gibrat’s law approximately, in that they

are invariant to firm size for all but the smallest firms. However, the

variance of firm growth falls with firm size.

3. The largest firms become so very fast. The median age of firms with more

than 10,000 employees is 75 years.

Constructing a model to match the above trends is not a trivial task. The

author here combines three elements: (1) Firm-level shocks to productivity.

This departs from the Klette and Kortum framework and allows for the presence

of very large firms. (2) Persistent (but not perfectly) heterogeneity in firm

growth potential, which allows for these large firms to be relatively young. (3)

Idiosyncratic product level shocks.
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1 Model of Firm Dynamics

I will follow the notation used in Luttmer (2011) throughout, rather than that

used in previous lectures. There is a mass of consumers H that is growing at rate

η. Outcomes are evaluated according to the ”dynastic” CRRA utility function

with parameter γ

U(~C) =

∫ ∞
0

exp(−ρt)H(t)

[
(C(t)/H(t))1−γ − 1

1− γ

]
dt

Notice that this is simple the population weighted utility over per-capita con-

sumption. We’ve derived many times the Euler equation for this type of econ-

omy, although usually without population growth. It can be shown that the

implication for the interest rate is

r = ρ+ θ(Ċ/C − η)

Aggregate consumption is actually a composite of a continuum of differentiated

goods with

C =

[∫ N

0

C
σ−1
σ

j dj

] σ
σ−1

If the composite good is produced competitively, this yields the demand function

Cj =
(pj
P

)−σ
C

where pj is the price of the intermediate cj and P is the price of the composite.

Furthermore, the prices of the differentiated goods will be equal in equilibrium,

meaning

C = N
σ

σ−1Cj
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which reflects gains from variety. It suffices to know that demand for each good

is isoelastic with elasticity σ.

1.1 Firms

As we have often assumed, differentiated goods producers can use ` units of

labor to produce Z` units of the commodity. Furthermore, Z is growing over

time at rate θ. Thus the marginal cost is w/Z. Firms will charge a fixed markup

over cost

pj
P

=

(
σ

σ − 1

)
w

Z

Finally we can use this to derive an expression for the wage

w =

(
σ − 1

σ

)
ZN1/(σ−1)

We can also derive the labor utilization

` =

[(
σ − 1

σ

)
Z

w

]σ−1(
σ − 1

σ

)
C

w

Additionally, the profits will be

π =
1

σ

[(
σ − 1

σ

)
Z

w

]σ−1
C =

w`

σ − 1

To produce a differentiated good, you need a blueprint. Blue prints depreciate

in a one-hoss-shay fashion.1 Furthermore, blue prints can be replicated from

existing blueprints using labor (ν) or created anew by entrepreneurs (µ). Thus

the number of blueprints N grows (or shrinks) at rate ν + µ− λ.

1This terminology is in reference to the poem ”The Deacon’s Masterpiece; or The Won-

derful One-Hoss Shay” by Oliver Wendell Holmes, Sr.
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Employing i labor on blueprint replication yields a rate µ = f(i) of success.

Similarly, using j labor on maintaining a blueprint yields a loss rate of λ = g(j).

Thus the value of a blueprint q will satisfy

rq = max
i,j

{
w

[
`

σ − 1
− (i+ j)

]
+ (f(i)− g(j))q + q̇

}

This yields the first order condition

qf ′(i) = −qg′(j) = w

1.2 Entrepreneurs

Each agent is endowed with a two-dimensional skill vector (x, y), which represent

their ability to develop blueprints and do labor respectively. You can think of

this as analogous to brains and brawn. There is some fixed distribution over

these T (x, y). Thus agents will choose entrepreneurship or wage work according

to the relative values of qx and wy. So in terms of worker decisions, we only

really care about the distribution of x/y as it relates to the ratio q/w.

Here we can use a standard trick to simplify the outcome. We assume that

x and y are independent and Frechet distributed. They have respective mean

parameters sx and sy and a common shape parameter α. One can show that

under these assumptions

E = sx

[
(sxq)

σ

(syw)σ + (sxq)σ

]σ−1
σ

L = sy

[
(syw)σ

(syw)σ + (sxq)σ

]σ−1
σ

Thus the ratio of these two values has constant elasticity with respect to q/w
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and is given by

E

L
=

(
sx
sy

)σ ( q
w

)σ−1
Consistency with the rate of outside blueprint creation implies

νN = HE(q/w)

while on the labor market side we have

(`+ i+ j)N = HL(q/w)

1.3 Equilibrium

Restricting attention to balanced growth paths, we can see that for constant

q/w, the number of products N will grow with the population growth rate η.

Therefore we will have

η = ν + µ− λ

Per capita consumption can be expressed as C/H = N1/(σ−1)Z meaning it will

grow at rate

κ = θ +
η

σ − 1

Rearranging terms in the value function equation and noting that both q and

w will grow at the same rate as per capita consumption, we find

q

w
=

`
σ−1 + (i+ j)

r − κ− (µ− λ)
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We now have six equations in the six unknowns (i, j, µ, λ, `, q/w). There are

certain conditions under which an equilibrium is guaranteed to exist, but we

will omit them here.

1.4 Firm Size Distribution

For this, we can proceed with the derivation in a manner similar to how we

addressed the model from Klette and Kortum (2004). Let the mass of firms

with n products be Mn. Now the consistency equation is

N =
∑
n=1

nMn

We can write down a system of flow equations describing Mn in steady state

Inflows = Outflows

νN + 2λM2 = µM1 + λM1

(n− 1)µMn−1 + (n+ 1)λMn+1 = nµMn + nλMn

It is useful to define a normalized distribution as well, namely Pn ≡ Mn/F

where F =
∑∞
n=1Mn. In addition, we can define the share of product lines

owned by size n firms as Qn = nMn/N . In this case we can write down the flow

equations

ηQ1 = λQ2 + ν − (µ+ λ)Q1

1

n
ηQn = µQn−1 + λQn+1 − (µ+ λ)Qn

It is actually possible to solve in closed form for the resulting distribution.

However, it is sufficiently complicated to lack much clear intuition. However,

the main result of the theorem establishes the general shape of the distribution.
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First note that this reduces to the Klette-Kortum distribution when there is no

population growth, i.e. η = 0. We know that in this case, the distribution follows

Pn ∝ (µ/λ)n/n. Thus the distribution is thin-tailed in that case, contrary to

what we see in the data. In the general setting, we have the following proposition

to characterize the tail index of the distribution

Proposition. Suppose that η > µ − λ > 0. Then the right tail probabilities

Rn =
∑∞
k=n Pk of the stationary firm size distribution satisfy

lim
n→∞

n

[
1− Rn+1

Rn

]
= ζ ≡ η

µ− λ

For instance, if some generic distribution is Pareto, then the PDF satisfies Fn =

1−n−ζ , meaning Rn = n−ζ , then it can be shown that ζ is simply the tail index

as derived in the limit above. Meanwhile, doing the same for the Klette-Kortum

distribution yields ζ = 0, meaning it is thin-tailed.

The firm entry rate as a fraction of the number of incumbent firms ε in this

economy should satisfy

ε− λP1 = η

Given a mass of firms F , the average number of blueprints per firm is N̄ = N/F

and satisfies

Qn = nPn ·
F

N
=

n

N̄
· Pn

Consistency of the firm entry rate and the blueprint creation rate implies εF =

νN , meaning N̄ = ε/ν. We also know that P1 = N̄Q1 = (ε/ν)Q1. From here

we arrive at a closed form expression for the entry rate

ε = η

(
ν

ν − λQ1

)
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Given that we have pretty good information on the entry rate (≈ 10%), the

population growth rate, and the tail index of firms, we can get fairly tight con-

straints on the parameters here. However, even with the best fit, the median

firm is still older than the US. This shortcoming is what motivates the intro-

duction of firms types.

1.5 Firm Types

Included is an extension of the basic model where there are two types of firms,

high and low. The firms differ only in their level of productivity ZH and ZL.

Productivity growth for both is still θ. Entering firms are of high quality with

some probability α, while the remainder are low quality. Over time, high quality

firms degrade into low quality firms at rate δH . One can show that in this case,

under certain regularity conditions the tail index is given by

ζ = min

{
η + δH

[µH − λH ]+
,

η + δL
[µL − λL]+

}

Notice that we can generate a thick tail for the firm distribution even in the

absence of population growth. With this new setup, one can do a pretty good

job of matching the above mentioned targets, inclusive of the median age of

very large firms.

The only remaining question is how this affects Gibrat’s Law. That is, will it be

the case that high type firms will also be larger on average, producing the result

that large firms grow faster? This would certainly problematic, as if Gibrat’s

Law is only approximately true, it breaks in the other direction, with smaller

firms growing faster. It turns out that with a sufficiently large depreciation rate

of high type firms (the rate at which they turn into low type), we can alleviate

this problem.
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2 Mapping to Data

There has been a considerable amount of effort put into understanding the

dynamics of firm size and productivity in the data. The major source of in-

formation in this realm is the Longitudinal Business Database (LBD) put out

by the US Census Bureau. For an overview of this literature, see Foster et al.

(2001). Also consult Bartelsman and Doms (2000) for a slightly more concise

summary.

One of the major conclusions of these analyses is that there is very large amount

of idiosyncratic variation in plant-level outcomes, both in terms of levels and

growth. Furthermore, reallocation of inputs (primarily labor) is a particularly

salient force. Approximately 10

There are also interesting trends at the cyclical level. The general finding is that

reallocation is more intense during downturns. This results in lower variability

in productivity than what would otherwise be implied by within-firm variations.

See – for a detailed description.

It is important to get a handle on what the source of changes in sectoral produc-

tivity are. To this end, there are various productivity growth decompositions

one can utilize. At the highest level, we can decompose productivity into con-

tributions from the various constituent firms or plants, which we can just call

establishments

Pit =
∑
e∈I

setpet

where set denotes the output share of establishment e at time t. Next we can

decompose changes in this value. One of the many methods available breaks

down productivity changes into contributions from 5 sources: (1) within-plant,
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(2) between-plant from shares, (3) share covariance, (4) entry, and (5) exit:

∆Pit =
∑
e∈C

set−1∆pet +
∑
e∈C

(pet−1 − Pit−1)∆set +
∑
e∈C

∆pet∆set

+
∑
e∈N

set(pet − Pit−1)−
∑
e∈X

set−1(pet−1 − Pit−1)

Here C denotes the set of continuing firms, N is the set of entrants, and X is

the set of exiting firms.

In these decompositions, the shares are taken from variables such as output

or employment. The productivities are calculated as either the value added

per unit labor or something akin to Solow residual under the assumption of

Cobb-Douglas production. That is

ln pet = lnQet − αK lnKet − αL lnLet

Where Qet is output and the coefficients are calculated from input shares in

each industry. One can also include other classes of inputs such as materials

and structures.

The results of these decomposition generally come down along the following

lines. About half of productivity growth comes from changes within existing

firms. Around one quarter comes from reallocation between plants, which here

is the sum of the between-plant and covariance terms. Finally, the remaining

quarter results from net entry, that is, the sum of contributions from entry and

exit. Due to the variability from study to study, sometimes people just think of

this as one third from each.
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