
Economics 101
Lecture 2 - The Walrasian Model and Consumer Choice

1 Uncle Léon

The canonical model of exchange in economics is sometimes referred to as
the Walrasian Model, after the early economist Léon Walras. It defines a
system under which people choose what goods they would like to consume
subject to certain constraints. The result is an allocation of goods amongst
the agents in the economy.

Walrasian Assumption #1: Goods are interchangeable.

Examples include most consumer goods and commodities. For example, if
we think of an apple as a good, we abstract from the fact that each apple has
its own unique qualities such as cleanliness, ripeness, and origin. We could
define two goods, one for good apples, one for bad apples, etc. Non-examples
include paintings by Picasso. Each individual painting is too unique to be
considered interchangeable.

Walrasian Assumption #2: Consumers are price takers.

A consumer’s choice of quantity does not affect the unit price at which he
can buy goods. This is pretty reasonable for buying food at WaWa, but
not as much for buying wind turbines from GE. However, even in everyday
settings, you do see violations of this assumption. One common example is
“buy one get one free” offers.

Walrasian Assumption #3: There are no transaction costs.

With this assumption, the order in which goods are bought and sold does
not matter. All that matters is who ends up with what at the end of the
day. Again, you can imagine certain situations in which this is reasonable
and other in which it is not.
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We will restrict attention to RN
+ . Let x ∈ RN

+ be a commodity bundle
representing a collection containing x1 of good 1, x2 of good 2, etc. Similarly,
market prices can be expressed as a vector p ∈ RN

+ . Each consumer starts

with an endowment e ∈ RN
+ . We call the value of a consumer’s endowment

at market prices his or her wealth w ∈ R+. Here, w = p · e.
Given an endowment e and market prices p, there are certain commod-

ity bundles that a consumer can afford. We call this the budget set or
budget constraint:

B(e, p) =
{
x ∈ RN

+

∣∣ p · x ≤ p · e
}

The line where p · x = p · e is called the budget line.

Example 1. In two dimensions, the budget set consists of x ∈ R2
+ such that

p1x1 + p2x2 ≤ p1e1 + p2e2 = w

Thus it consists of any (x1, x2) below the line

x2 =

[(
p1
p2

)
e1 + e2

]
−
(
p1
p2

)
x1

Notice that in the above example, the budget set depends only on the
ratio of prices, not their individual values. This is true generally as well.
Multiplying all prices by a common constant does not affect the budget set.
Formally, this can be expressed as B(p, e) = B(αp, e) for all α > 0. Another
item to note is that the endowment is always on the budget line.

2 Optimization

Before we start maximizing utility subject to the budget constraint, we’ll
look at a more general problem to understand the underlying mathematics.

2.1 Unconstrained

First, we will consider the unconstrained case. Let f be a function mapping
from RN into R. The maximization problem we wish to solve is

max
x∈RN

f(x) (P)

Consider the following proposition that gives properties that any solution
must satisfy.
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Proposition 1. If f is continuously differentiable, any solution x? to (P )
will satisfy

∂f

∂xi

∣∣∣∣
x=x?

= 0 and
∂2f

∂x2i

∣∣∣∣
x=x?

≤ 0

The above is a necessary condition for an optimum, that is, it must be
satisfied at any optimum but can also be true elsewhere. Now we shall
consider a sufficient condition.

Proposition 2. When f is strictly concave, any x? satisfying

∂f

∂xi

∣∣∣∣
x=x?

= 0

is the unique solution to (P ).

This condition is sufficient because satisfying it guarantees that x? is an
optimum. Notice that it allows for the fact that there is no solution to (P ).
As an exercise, try to think of a function that is strictly concave, but has no
maximum.

Example 2. Consider the quadratic function

f(x) = −x2 + 2x− 4

The first and second derivatives are

f ′(x) = −2x+ 2 and f ′′(x) = −2 < 0

Thus f is strictly concave, and so the optimum will satisfy f(x?) = 0, mean-
ing x? = 1.

2.2 Constrained

Now we turn to constrained optimization. We again have a function f , but
now we seek to maximize f subject to certain equality constraints. To do
this, we must use the Lagrangian method.

The constraints can be formulated as function g1, . . . , gM which must
satisfy gi(x) = 0 for all j ∈ {1, . . . ,M}. In the case of the budget constraint,
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we would have g(x) = p · x− p · e. Notice that this is formulated as equality
rather than an inequality. We will see that when utility is strictly increasing,
this is without loss of generality.

The problem we wish to solve is then:

max
RN

f(x) (PC)

s.t. gj(x) = 0 ∀j

Now we introduce what are called Lagrange multipliers, λ1, . . . , λM satisfying
λi ≥ 0 for all j. Then we write down a new function of both x and λ
satisfying:

L(x, λ) = f(x)−
M∑
j=1

λjgj(x)

Observe that for all λ, any x? that maximizes L(x, λ) subject to g(x) = 0 will
also maximize f(x) subject to g(x) = 0. Therefore, it is sufficient to maximize
L(x, λ) with respect to x (yielding an x?(λ)), then impose g(x?(λ)) = 0 to
determine the value of λ. Such an x? will then be a solution to (PC). We’ll
talk more about the intuition behind Lagrange multipliers when we start
applying them to economics environments.

Example 3. Let our objective function be

f(x, y) = x+ y

We wish to maximize this function subject to (x, y) lying on the unit circle,
that is

x2 + y2 = 1

The Lagrangian is

L = x+ y − λ(x2 + y2 − 1)

Now we take derivatives to find the maximum

∂L
∂x

= 1− 2λx = 0 and
∂L
∂x

= 1− 2λy = 0
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This yields

x = y =
1

2λ

Now we can plug this into the constraint

1 = x2 + y2 =

(
1

2λ

)2

+

(
1

2λ

)2

=
1

2λ2

⇒ λ =
1√
2

=

√
2

2

Plugging this back in for x and y

x = y =

√
2

2

3 Consumer Optimization

With these tools in hand, we can address the canonical optimization problem
in economics:

max
x∈RN

+

u(x)

s.t. p · x ≤ p · e

Using the following fact, we can simplify the problem considerably

Proposition 3. When u is increasing, any optimal choice x? will satisfy
p · x? = p · e.

To see this, suppose that for the optimum x? we had p · x? < p · e. If
we consumed just a tiny bit more of each good, we would still be within the
budget set and we would achieve higher utility by virtue of u begin increasing.
Thus x? could not have been optimal.

So we can treat the budget constraint as an equality as use the Lagrangian
techniques that we discussed. The Lagrangian in this case is

L(x, λ) = u(x)− λ(p · e− p · x)

= u(x)− λ
N∑
i=1

pi(ei − xi)
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Notice that there is only one λ here (i.e., it is a scalar, not a vector). Taking
derivatives as before, we find

∂L
∂xi

= ui(x)− λpi = 0

⇒ ui(x) = λpi

The above is often called the first-order condition or FOC. Taking the ratio
of this equation for goods i and j, we arrive at

−MRSij(x|u) =
ui(x)

uj(x)
=
λpi
λpj

=
pi
pj

Here we encounter our old friend, the MRS, once again. The above condition
states that the negative of the MRS should be equal to the price ratio. We
can interpret this either algebraically or graphically.

Consider the case of only 2 goods. Graphically, at the optimal choice,
the indifference curve for x? will just touch the budget set, but otherwise
lie entirely above it. This way, any point yielding higher utility must be
outside the budget set, meaning any point inside the budget set must give
weakly lower utility. Conversely, at a suboptimal point, the indifference will
lie partially inside the budget set, meaning there are points inside the budget
set giving higher utility.

Algebraically, suppose that we have

−MRS12(x|u) =
u1(x)

u2(x)
<
p1
p2

In this case, we can sell ε unit of good 1 and buy ε · p1/p2 units of good 2.
You can see that the net cost of this is zero, so we will still remain within
the budget set. Let the consumption level after

(x′1, x
′
2) = (x1 − ε, x2 + ε · p1/p2)

For very small epsilon, the utility at x′ will be approximately

u(x′) ≈ u(x)− εu1(x) + εp1/p2u2(x)

= u(x) + εu2(x)

[
−u1(x)

u2(x)
+
p1
p2

]
> u(x)
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Thus for ε small enough, we can improve our utility by moving x′, so x cannot
be optimal. In the case where

−MRS12(x|u) =
u1(x)

u2(x)
>
p1
p2

the same logic applies but with the proposed sale reversed. Thus we are left
with equality as the only choice.

Example 4 (Cobb-Douglas Utility). Suppose utility takes the form

u(x) =
N∑
i=1

αi log(xi)

where
∑N

i=1 αi = 1. The Lagrangian in this case is

L(x, λ) =
∑

αi log(xi)− λ
∑

pi(ei − xi)

Taking the derivative, we find

∂L
∂xi

=
αi
xi
− λpi = 0

⇒ αi = λpixi

⇒ 1 =
∑

αi = λ
∑

pixi = λ
∑

piei = λw

⇒ λ =
1

w
⇒ pixi = αiw

⇒ xi =
αiw

pi

The implication here is that you spend a fraction αi of your wealth on good
i. The utility value achieved is

u(x) =
∑

αi log

(
αiw

pi

)
=
∑

αi log

(
αi
pi

)
+ log(w)
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This implies

∂u(x)

∂w
=

1

w
= λ

So λ is the derivative of utility at the optimum with respect to wealth. This
is actually the case in general. Since λ is the utility gained from spending
1 extra dollar on good i and this is equalized across goods at the optimum,
it is also the value of simply have 1 extra dollar to spend on anything you
please.

Example 5 (Leontieff Utility). Consider the utility function

u(x, y) = min{αxx, αyy}

This utility function is not continuously differentiable, so we can’t use La-
grangian techniques to find the optimal choice. However, we can fairly easy
show intuitively what the consumer will choose. Notice that any optimal
choice will satisfy

αxx = αyy

If this weren’t the case, the agent could consume a little bit less of one good
and a little bit more of the other, and the minimum would actually go up.
Given the above equation and the budget constraint, we can then solve for
both x and y

pxx+ pyy = pxex + pyey = w

⇒ pxx+ py

(
αx
αy

)
x = w

⇒ x =
w

px + py

(
αx

αy

) =

(
αx

αxpx + αypy

)
w

A bit of algebra reveals that

y =

(
αy

αxpx + αypy

)
w

4 Special Cases

Now we’ll delve a bit into situations where things aren’t so clean cut.
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4.1 Boundary Solutions

Up until now, we have been working with functional forms that ensure strictly
positive consumption of each good. For instance, with Cobb-Douglas pref-
erences, the marginal utility of consuming a good at zero consumption is
infinity. Since our utility functions are only defined over RN

+ , we have implic-
itly assumed that xi ≥ 0 for all i.

This is a little tricky to incorporate into the Lagrangian approach, so
often once has to simply guess and check.

Example 6 (Modified Cobb-Douglas). Consider the utility function

u(x, y) = α log(x) + (1− α) log(y + β)

where α > 0 and β ≥ 0. The Lagrangian here is

L(x, λ) = α log(x) + (1− α) log(y + β) + λ(pxex + pyey − pxx− pyy)

Taking derivatives, we find

∂L
∂x

=
α

x
− λpx = 0 and

∂L
∂y

=
1− α
y + β

− λpy = 0

Rearranging yields

α = λpxx and 1− α = λpyy + λpyβ

Summing these, we can find λ

1 = λ(pxx+ pyy) + λpyβ = λ(w + pyβ)

⇒ λ =
1

w + pyβ

Plugging these back into the optimal choices

x =

(
α

px

)
(w + pyβ) and y =

(
1− α
py

)
(w + pyβ)− β

The above solution is valid only when y ≥ 0, i.e.

y =

(
1− α
py

)
(w + pyβ)− β ≥ 0

⇔ (1− α)(w + pyβ) ≥ pyβ

⇔ (1− α)w ≥ αpyβ (?)
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So when wealth is very high or the price of y is very low, we can be sure of
positive consumption of good y. When this condition does not hold, then
y = 0. In this case, we can simply derive x from the budget constraint. Since
the consumer is spending everything on good x, we have

w = px · x+ py · 0

⇒ x =
w

px

Notice that when condition (?) holds with equality, the interior solution yields
(x, y) = ( w

px
, 0), so our choice function is in fact continuous in p.

4.2 Non-concavity

Non-concavity in utility functions manifests itself primary in two ways:

i. Problems with tangency conditions, either multiple points of tangency
or points where the derivative is zero but are not optima.

ii. Problems that have only boundary solutions.

For the first, you can imagine examples in one dimension such as u(x) = x3.
In two dimensions, it is very possible to cook up indifference curves that are
tangent to the budget line but are not those of an optimal choice. For the
second, here are two concrete examples.

Example 7 (Strictly Convex Utility). Consider the utility function

u(x, y) = x2 + y2

Here, indifference curves have the opposite shape from what we’re used to.
They curve inwards instead of outwards. We can see the solution to this
problem graphically. When px > py, the consumer will choose (x, y) =
(0, w/py). While if px < py, the consumer will choose (x, y) = (w/px, 0). In the
case where px = py, the consumer will be indifferent.

One concrete instance of this example could be if your family wishes to
buy two computers and each can be a PC or a Mac. Since each platform
interoperates better with itself, they would probably end up buying either
two PCs or two Macs, but not one of each.
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Example 8 (Linear utility). Consider utility of the form

u(x, y) =
N∑
i=1

αixi

Since utility is not strictly concave, the Lagrangian approach we went over is
not technically applicable, but it can be instructive. The Lagrangian takes
the familiar form and our first order conditions are

∂L
∂xi

= αi − λpi = 0

Since the αi are in general different, this can’t be true for all i. The solution
is then that this is true only for i with xi > 0. In the case where xi = 0, then
we want

αi − λpi < 0

In essence, if it is optimal to consume zero of one good, then it must be that
increasing consumption of that good a little does not benefit the agent. The
solution then must take the form

λ = max
i

{
αi
pi

}
where xi ≥ 0 if αi/pi = λ and otherwise xi = 0. Thus in the case where
there is a unique maximum to the above, only one good will have positive
consumption, and it will be xi = w/pi. When there are multiple maxima,
there are many combinations that are optimal.

As a final note, with the preferences displayed above, the goods are con-
sidered perfect substitutes. That is, their marginal rate of substitution is
constant for all values of consumption. At the opposite end of this spectrum
are perfect complements. We saw these when we analyzed Leontieff utility.
In that case, there is no sense in which you can give up a bit of one good
and make up the difference with more of the other good. You must increase
consumption of both goods simultaneously in order to increase your utility.
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5 Shortcuts

With only two goods, we need not always use the Lagrangian method. We
can substitute for the other using the budget constraint. As before

x2 =

[(
p1
p2

)
e1 + e2

]
−
(
p1
p2

)
x1

Plugging this into utility, we get

û(x1) = u(x1, (p1/p2)e1 + e2 − (p1/p2)x1)

Taking the derivative yields

û′(x1) = u1(x)−
(
p1
p2

)
u2(x) = 0

⇒ u1(x)

u2(x)
=
p1
p2

The same MRS condition we saw before.
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